1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680
|
import io
import os
import time
import types
import unittest
import warnings
from contextlib import redirect_stderr, redirect_stdout
from itertools import product, repeat
from multiprocessing import Barrier, Value
from threading import current_thread, main_thread, Thread
from unittest.mock import Mock, patch
import numpy as np
from tqdm import tqdm
from mpire import cpu_count, WorkerPool
from mpire.async_result import AsyncResult
from mpire.context import FORK_AVAILABLE, RUNNING_WINDOWS
# Skip start methods that use fork if it's not available
if not FORK_AVAILABLE:
TEST_START_METHODS = ['spawn', 'threading']
else:
TEST_START_METHODS = ['fork', 'forkserver', 'spawn', 'threading']
def square(idx, x):
return idx, x * x
def extremely_large_output(idx, _):
return idx, os.urandom(1024 * 1024)
def square_numpy(x):
return x * x
def subtract(x, y):
return x - y
class MapTest(unittest.TestCase):
def setUp(self):
# Create some test data. Note that the regular map reads the inputs as a list of single tuples (one argument),
# whereas parallel.map sees it as a list of argument lists. Therefore we give the regular map a lambda function
# which mimics the parallel.map behavior.
self.test_data = list(enumerate([1, 2, 3, 5, 6, 9, 37, 42, 1337, 0, 3, 5, 0]))
self.test_desired_output = list(map(lambda _args: square(*_args), self.test_data))
self.test_data_len = len(self.test_data)
# Numpy test data
self.test_data_numpy = np.random.rand(100, 2)
self.test_desired_output_numpy = square_numpy(self.test_data_numpy)
self.test_data_len_numpy = len(self.test_data_numpy)
def test_all_maps(self):
"""
Tests the map related functions
"""
def get_generator(iterable):
yield from iterable
# Test results for different parameter settings
print()
for n_jobs, n_tasks_max_active, worker_lifespan, chunk_size, n_splits in tqdm([
(None, None, None, None, None),
(1, None, None, None, None),
(2, None, None, None, None),
(2, 2, None, None, None),
(2, None, 2, None, None),
(2, None, None, 3, None),
(2, None, None, None, 3),
(2, None, None, 3, 3),
(2, None, 1, 3, None)
]):
with WorkerPool(n_jobs=n_jobs) as pool:
for map_func, sort, result_type in ((pool.map, False, list), (pool.map_unordered, True, list),
(pool.imap, False, types.GeneratorType),
(pool.imap_unordered, True, types.GeneratorType)):
with self.subTest(map_func=map_func, input='list', n_jobs=n_jobs,
n_tasks_max_active=n_tasks_max_active, worker_lifespan=worker_lifespan,
chunk_size=chunk_size, n_splits=n_splits):
# Test if parallel map results in the same as ordinary map function. Should work both for
# generators and iterators. Also check if an empty list and extremely large output (exceeding
# os.pipe limits) works as desired.
results_list = map_func(square, self.test_data, max_tasks_active=n_tasks_max_active,
worker_lifespan=worker_lifespan)
self.assertIsInstance(results_list, result_type)
self.assertEqual(self.test_desired_output,
sorted(results_list, key=lambda tup: tup[0]) if sort else list(results_list))
with self.subTest(map_func=map_func, input='generator', n_jobs=n_jobs,
n_tasks_max_active=n_tasks_max_active, worker_lifespan=worker_lifespan,
chunk_size=chunk_size, n_splits=n_splits):
results_list = map_func(square, get_generator(self.test_data), iterable_len=self.test_data_len,
max_tasks_active=n_tasks_max_active, worker_lifespan=worker_lifespan)
self.assertIsInstance(results_list, result_type)
self.assertEqual(self.test_desired_output,
sorted(results_list, key=lambda tup: tup[0]) if sort else list(results_list))
with self.subTest(map_func=map_func, input='empty list', n_jobs=n_jobs,
n_tasks_max_active=n_tasks_max_active, worker_lifespan=worker_lifespan,
chunk_size=chunk_size, n_splits=n_splits):
results_list = map_func(square, [], max_tasks_active=n_tasks_max_active,
worker_lifespan=worker_lifespan)
self.assertIsInstance(results_list, result_type)
self.assertEqual([], list(results_list))
# When the os pipe capacity is exceeded, a worker restart based on worker lifespan would hang if we
# not fetch all the results from a worker. We only verify the amount of data returned here.
with self.subTest(map_func=map_func, output='data exceeding pipe limits', n_jobs=n_jobs,
n_tasks_max_active=n_tasks_max_active, worker_lifespan=worker_lifespan,
chunk_size=chunk_size, n_splits=n_splits):
results_list = map_func(extremely_large_output, self.test_data,
max_tasks_active=n_tasks_max_active, worker_lifespan=worker_lifespan)
self.assertIsInstance(results_list, result_type)
self.assertEqual(len(self.test_desired_output), len(list(results_list)))
def test_numpy_input(self):
"""
Test map with numpy input
"""
print()
for n_jobs, n_tasks_max_active, worker_lifespan, chunk_size, n_splits in tqdm([
(None, None, None, None, None),
(1, None, None, None, None),
(2, None, None, None, None),
(2, 2, None, None, None),
(2, None, 2, None, None),
(2, None, None, 3, None),
(2, None, None, None, 3),
(2, None, None, 3, 3),
(2, None, 1, 3, None)
]):
with WorkerPool(n_jobs=n_jobs) as pool:
# Test numpy input. map should concatenate chunks of numpy output to a single output array if we
# instruct it to
with self.subTest(concatenate_numpy_output=True, map_function='map', n_jobs=n_jobs,
n_tasks_max_active=n_tasks_max_active, worker_lifespan=worker_lifespan,
chunk_size=chunk_size, n_splits=n_splits):
results = pool.map(square_numpy, self.test_data_numpy, max_tasks_active=n_tasks_max_active,
worker_lifespan=worker_lifespan, concatenate_numpy_output=True)
self.assertIsInstance(results, np.ndarray)
np.testing.assert_array_equal(results, self.test_desired_output_numpy)
# If we disable it we should get back chunks of the original array
with self.subTest(concatenate_numpy_output=False, map_function='map', n_jobs=n_jobs,
n_tasks_max_active=n_tasks_max_active, worker_lifespan=worker_lifespan,
chunk_size=chunk_size, n_splits=n_splits):
results = pool.map(square_numpy, self.test_data_numpy, max_tasks_active=n_tasks_max_active,
worker_lifespan=worker_lifespan, concatenate_numpy_output=False)
self.assertIsInstance(results, list)
np.testing.assert_array_equal(np.concatenate(results), self.test_desired_output_numpy)
# Numpy concatenation doesn't exist for the other functions
with self.subTest(map_function='imap', n_jobs=n_jobs, n_tasks_max_active=n_tasks_max_active,
worker_lifespan=worker_lifespan, chunk_size=chunk_size, n_splits=n_splits):
results = pool.imap(square_numpy, self.test_data_numpy, max_tasks_active=n_tasks_max_active,
worker_lifespan=worker_lifespan)
self.assertIsInstance(results, types.GeneratorType)
np.testing.assert_array_equal(np.concatenate(list(results)), self.test_desired_output_numpy)
# map_unordered and imap_unordered cannot be checked for correctness as we don't know the order of the
# returned results, except when n_jobs=1. In the other cases we could, however, check if all the values
# (numpy rows) that are returned are present (albeit being in a different order)
for map_func, result_type in ((pool.map_unordered, list), (pool.imap_unordered, types.GeneratorType)):
with self.subTest(map_function=map_func, n_jobs=n_jobs, n_tasks_max_active=n_tasks_max_active,
worker_lifespan=worker_lifespan, chunk_size=chunk_size, n_splits=n_splits):
results = map_func(square_numpy, self.test_data_numpy, max_tasks_active=n_tasks_max_active,
worker_lifespan=worker_lifespan)
self.assertIsInstance(results, result_type)
concattenated_results = np.concatenate(list(results))
if n_jobs == 1:
np.testing.assert_array_equal(concattenated_results, self.test_desired_output_numpy)
else:
# We sort the expected and actual results using lexsort, which sorts using a sequence of
# keys. We transpose the array to sort on columns instead of rows.
np.testing.assert_array_equal(
concattenated_results[np.lexsort(concattenated_results.T)],
self.test_desired_output_numpy[np.lexsort(self.test_desired_output_numpy.T)]
)
def test_dictionary_input(self):
"""
Test map with dictionary input
"""
with WorkerPool(n_jobs=1) as pool:
# Should work
with self.subTest('correct input'):
results_list = pool.map(subtract, [{'x': 5, 'y': 2}, {'y': 5, 'x': 2}])
self.assertEqual(results_list, [3, -3])
# Should throw
with self.subTest("missing 'y', unknown parameter 'z'"), self.assertRaises(TypeError):
pool.map(subtract, [{'x': 5, 'z': 2}])
# Should throw
with self.subTest("unknown parameter 'z'"), self.assertRaises(TypeError):
pool.map(subtract, [{'x': 5, 'y': 2, 'z': 2}])
def test_start_methods(self):
"""
Test different start methods. All should work just fine
"""
print()
for start_method in tqdm(TEST_START_METHODS):
with self.subTest(start_method=start_method, map='map'), WorkerPool(2, start_method=start_method) as pool:
results_list = pool.map(square, self.test_data)
self.assertIsInstance(results_list, list)
self.assertEqual(self.test_desired_output, results_list)
with self.subTest(start_method=start_method, map='map_unordered'), \
WorkerPool(2, start_method=start_method) as pool:
results_list = pool.map_unordered(square, self.test_data)
self.assertIsInstance(results_list, list)
self.assertEqual(self.test_desired_output, sorted(results_list, key=lambda tup: tup[0]))
with self.subTest(start_method=start_method, map='imap'), WorkerPool(2, start_method=start_method) as pool:
results_list = pool.imap(square, self.test_data)
self.assertIsInstance(results_list, types.GeneratorType)
self.assertListEqual(list(results_list), self.test_desired_output)
with self.subTest(start_method=start_method, map='imap_unordered'), \
WorkerPool(2, start_method=start_method) as pool:
results_list = pool.imap_unordered(square, self.test_data)
self.assertIsInstance(results_list, types.GeneratorType)
self.assertEqual(self.test_desired_output, sorted(results_list, key=lambda tup: tup[0]))
def test_mixing_map_calls(self):
"""
When using the same pool, mixing map calls should raise
"""
with WorkerPool(2) as pool:
imap_results = pool.imap(square, self.test_data)
next(imap_results) # Actually start the pool
with self.assertRaises(RuntimeError):
pool.map(square, self.test_data)
with WorkerPool(2) as pool:
imap_results = pool.imap_unordered(square, self.test_data)
next(imap_results) # Actually start the pool
with self.assertRaises(RuntimeError):
next(pool.imap(square, self.test_data))
def test_terminate(self):
"""
When a lazy map call is running and the pool is terminated, exhausting the results should raise
"""
with self.subTest("calling terminate() explicitly"), WorkerPool(1) as pool:
imap_results = pool.imap(square, self.test_data)
next(imap_results) # Actually start the pool
pool.terminate()
with self.assertRaises(RuntimeError):
list(imap_results)
with self.subTest("calling terminate() implicitly"):
with WorkerPool(1) as pool:
imap_results = pool.imap(square, self.test_data)
next(imap_results) # Actually start the pool
with self.assertRaises(RuntimeError):
list(imap_results)
# Before, this could cause a deadlock once all tests were done
print()
with self.subTest("calling terminate() implicitly, with progress bar"):
with WorkerPool(1) as pool:
imap_results = pool.imap(square, self.test_data, progress_bar=True)
next(imap_results) # Actually start the pool
with self.assertRaises(RuntimeError):
list(imap_results)
class PoolInThreadTest(unittest.TestCase):
def setUp(self):
self.test_data = [1, 2, 3, 5, 6, 9, 37, 42, 1337, 0, 3, 5, 0]
self.test_desired_output = [self._square(x) for x in self.test_data]
def test_start_methods(self):
"""
Test that a WorkerPool can be started inside a thread, which isn't the main thread. Test for different start
methods. All should work just fine
"""
for start_method in TEST_START_METHODS:
with self.subTest(start_method=start_method):
t = Thread(target=self._map_thread, args=(start_method,))
t.start()
t.join()
def _map_thread(self, start_method):
"""
This function is called from within a thread
"""
self.assertNotEqual(current_thread(), main_thread())
with WorkerPool(2, start_method=start_method) as pool:
results_list = pool.map(self._square, self.test_data)
self.assertIsInstance(results_list, list)
self.assertListEqual(self.test_desired_output, results_list)
@staticmethod
def _square(x):
return x * x
class ApplyTest(unittest.TestCase):
def test_apply_async_call(self):
"""
Test that apply simply calls apply_async
"""
with WorkerPool(1) as pool, patch.object(pool, 'apply_async') as mock_apply_async:
pool.apply(subtract, (1,), {'y': 2}, self._callback, self._error_callback,
self._init, self._exit, 0.1, 0.2, 0.3)
mock_apply_async.assert_called_once_with(subtract, (1,), {'y': 2}, self._callback, self._error_callback,
self._init, self._exit, 0.1, 0.2, 0.3)
def test_result(self):
"""
Test that apply returns the correct result
"""
with WorkerPool(1) as pool:
results = [pool.apply(self._square, (i,)) for i in range(10)]
self.assertEqual(results, [self._square(i) for i in range(10)])
@staticmethod
def _callback(_):
return 0
@staticmethod
def _error_callback(_):
return 1
@staticmethod
def _init():
return
@staticmethod
def _exit():
return 2
@staticmethod
def _square(x):
return x * x
class ApplyAsyncTest(unittest.TestCase):
def test_result(self):
"""
Test that apply_async returns the correct result. Calling get multiple times should also work
"""
with WorkerPool(2) as pool:
results = [pool.apply_async(self._square, (i,)) for i in range(10)]
[self.assertIsInstance(result, AsyncResult) for result in results]
self.assertListEqual([result.get() for result in results], [self._square(i) for i in range(10)])
self.assertListEqual([result.get() for result in results], [self._square(i) for i in range(10)])
def test_args_kwargs(self):
"""
Test that apply_async works with args and kwargs
"""
with WorkerPool(2) as pool:
results = [pool.apply_async(subtract, (i * i,), {'y': i}) for i in range(10)]
self.assertListEqual([result.get() for result in results], [subtract(i * i, i) for i in range(10)])
results = [pool.apply_async(subtract, (), {'x': i * i, 'y': i}) for i in range(10)]
self.assertListEqual([result.get() for result in results], [subtract(i * i, i) for i in range(10)])
def test_callback(self):
"""
Test that apply_async calls the callback function on success
"""
callback = Mock()
with WorkerPool(1) as pool:
pool.apply_async(self._square, (42,), callback=callback).get()
callback.assert_called_once_with(42 * 42)
def test_callback_error(self):
"""
Test that apply_async calls the error callback function on error
"""
callback = Mock()
with WorkerPool(1) as pool:
value_error = ValueError('test')
with self.assertRaises(ValueError):
pool.apply_async(self._raise_exception, (value_error,), error_callback=callback).get()
self.assertIsInstance(callback.call_args[0][0], ValueError)
def test_second_apply_raises(self):
"""
When a second apply task raises an exception, the first task should still be able to complete. I.e., the second
worker shouldn't cause the entire pool to shutdown
"""
with self.subTest("exception is raised"), WorkerPool(2) as pool:
event = pool.ctx.Event()
pool.set_shared_objects(event)
first_result = pool.apply_async(self._wait_and_return, (42,))
with self.assertRaises(ValueError):
pool.apply_async(self._raise_exception_2).get()
self.assertFalse(first_result.ready())
event.set()
self.assertEqual(first_result.get(), 42)
with self.subTest("timeout is raised"), WorkerPool(2) as pool:
event = pool.ctx.Event()
pool.set_shared_objects(event)
first_result = pool.apply_async(self._wait_and_return, (42,))
with self.assertRaises(TimeoutError):
pool.apply_async(self._wait_and_return, (1337,), task_timeout=0.01).get()
self.assertFalse(first_result.ready())
event.set()
self.assertEqual(first_result.get(), 42)
@staticmethod
def _square(x):
return x * x
@staticmethod
def _raise_exception(exception):
raise exception
@staticmethod
def _raise_exception_2(_):
raise ValueError
@staticmethod
def _wait_and_return(e, x):
e.wait()
return x
class WorkerIDTest(unittest.TestCase):
def test_by_config_function(self):
"""
Test setting passing on the worker ID using the pass_on_worker_id function
"""
for n_jobs, pass_worker_id in product([1, 3], [True, False]):
with self.subTest(n_jobs=n_jobs, pass_worker_id=pass_worker_id, config_type='function'), \
WorkerPool(n_jobs=n_jobs) as pool:
pool.pass_on_worker_id(pass_worker_id)
# Tests should fail when number of arguments in function is incorrect, worker ID is not within range,
# or when the shared objects are not equal to the given arguments
f = self._f1 if pass_worker_id else self._f2
self.assertListEqual(pool.map(f, ((n_jobs,) for _ in range(10)), iterable_len=10), [True] * 10)
def test_by_constructor(self):
"""
Test setting passing on the worker ID in the constructor
"""
for n_jobs, pass_worker_id in product([1, 3], [True, False]):
with self.subTest(n_jobs=n_jobs, pass_worker_id=pass_worker_id, config_type='constructor'), \
WorkerPool(n_jobs=n_jobs, pass_worker_id=pass_worker_id) as pool:
# Tests should fail when number of arguments in function is incorrect, worker ID is not within range,
# or when the shared objects are not equal to the given arguments
f = self._f1 if pass_worker_id else self._f2
self.assertListEqual(pool.map(f, ((n_jobs,) for _ in range(10)), iterable_len=10), [True] * 10)
def test_start_methods(self):
"""
Test for different start methods
"""
for start_method in TEST_START_METHODS:
with self.subTest(start_method=start_method), \
WorkerPool(n_jobs=2, pass_worker_id=True, start_method=start_method) as pool:
self.assertListEqual(pool.map(self._f1, ((2,) for _ in range(10)), iterable_len=10), [True] * 10)
@staticmethod
def _f1(_wid, _n_jobs):
"""
Function with worker ID
"""
tests_succeed = True
tests_succeed &= isinstance(_wid, int)
tests_succeed &= _wid >= 0
tests_succeed &= _wid <= _n_jobs
return tests_succeed
@staticmethod
def _f2(_n_jobs):
"""
Function without worker ID (simply tests if WorkerPool correctly handles pass_worker_id=False)
"""
return True
class SharedObjectsTest(unittest.TestCase):
def test_by_config_function(self):
"""
Tests passing shared objects using the set_shared_objects function
"""
for n_jobs, shared_objects in product([1, 3], [None, (37, 42), ({'1', '2', '3'})]):
with self.subTest(n_jobs=n_jobs, shared_objects=shared_objects, config_type='function'), \
WorkerPool(n_jobs=n_jobs) as pool:
# Configure pool
pool.set_shared_objects(shared_objects)
# Tests should fail when number of arguments in function is incorrect, worker ID is not within range,
# or when the shared objects are not equal to the given arguments
f = self._f1 if shared_objects else self._f2
self.assertListEqual(pool.map(f, ((shared_objects,) for _ in range(10)), iterable_len=10), [True] * 10)
def test_by_constructor(self):
"""
Tests passing shared objects in the constructor
"""
for n_jobs, shared_objects in product([1, 3], [None, (37, 42), ({'1', '2', '3'})]):
# Pass on arguments using the constructor instead
with self.subTest(n_jobs=n_jobs, shared_objects=shared_objects, config_type='constructor'), \
WorkerPool(n_jobs=n_jobs, shared_objects=shared_objects) as pool:
# Tests should fail when number of arguments in function is incorrect, worker ID is not within range,
# or when the shared objects are not equal to the given arguments
f = self._f1 if shared_objects else self._f2
self.assertListEqual(pool.map(f, ((shared_objects,) for _ in range(10)), iterable_len=10), [True] * 10)
def test_start_methods(self):
"""
Tests for different start methods
"""
for start_method in TEST_START_METHODS:
with self.subTest(start_method=start_method), \
WorkerPool(n_jobs=2, shared_objects=({'1', '2', '3'}), start_method=start_method) as pool:
self.assertListEqual(pool.map(self._f1, (({'1', '2', '3'},) for _ in range(10)), iterable_len=10),
[True] * 10)
@staticmethod
def _f1(_sobjects, _args):
"""
Function with shared objects
"""
return _sobjects == _args
@staticmethod
def _f2(_args):
"""
Function without shared objects (simply tests if WorkerPool correctly handles shared_objects=None)
"""
return True
class WorkerStateTest(unittest.TestCase):
def test_by_config_function(self):
"""
Tests setting worker state using the set_use_worker_state function
"""
for n_jobs, use_worker_state, n_tasks in product([1, 3], [False, True], [0, 1, 150]):
with self.subTest(n_jobs=n_jobs, use_worker_state=use_worker_state, n_tasks=n_tasks),\
WorkerPool(n_jobs=n_jobs, pass_worker_id=True) as pool:
pool.set_use_worker_state(use_worker_state)
# When use_worker_state is set, the final (worker_id, n_args) of each worker should add up to the
# number of given tasks
f = self._f1 if use_worker_state else self._f2
results = pool.map(f, range(n_tasks), chunk_size=2)
if use_worker_state:
n_processed_per_worker = [0] * n_jobs
for wid, n_processed, tests_succeed in results:
n_processed_per_worker[wid] = n_processed
self.assertTrue(tests_succeed)
self.assertEqual(sum(n_processed_per_worker), n_tasks)
def test_by_constructor(self):
"""
Tests setting worker state in the constructor
"""
for n_jobs, use_worker_state, n_tasks in product([1, 3], [False, True], [0, 1, 150]):
with self.subTest(n_jobs=n_jobs, use_worker_state=use_worker_state, n_tasks=n_tasks), \
WorkerPool(n_jobs=n_jobs, pass_worker_id=True, use_worker_state=use_worker_state) as pool:
# When use_worker_state is set, the final (worker_id, n_args) of each worker should add up to the
# number of given tasks
f = self._f1 if use_worker_state else self._f2
results = pool.map(f, range(n_tasks), chunk_size=2)
if use_worker_state:
n_processed_per_worker = [0] * n_jobs
for wid, n_processed, tests_succeed in results:
n_processed_per_worker[wid] = n_processed
self.assertTrue(tests_succeed)
self.assertEqual(sum(n_processed_per_worker), n_tasks)
def test_start_methods(self):
"""
Test for different start methods
"""
for start_method in TEST_START_METHODS:
with self.subTest(start_method=start_method), \
WorkerPool(n_jobs=2, pass_worker_id=True, use_worker_state=True, start_method=start_method) as pool:
results = pool.map(self._f1, range(10), chunk_size=2)
n_processed_per_worker = [0, 0, 0]
for wid, n_processed, tests_succeed in results:
n_processed_per_worker[wid] = n_processed
self.assertTrue(tests_succeed)
self.assertEqual(sum(n_processed_per_worker), 10)
@staticmethod
def _f1(_wid, _wstate, _arg):
"""
Function with worker ID and worker state
"""
tests_succeed = True
tests_succeed &= isinstance(_wstate, dict)
# Worker id should always be the same
_wstate.setdefault('worker_id', set()).add(_wid)
tests_succeed &= _wstate['worker_id'] == {_wid}
# Should contain previous args
_wstate.setdefault('args', []).append(_arg)
return _wid, len(_wstate['args']), tests_succeed
@staticmethod
def _f2(_wid, _):
"""
Function with worker ID (simply tests if WorkerPool correctly handles use_worker_state=False)
"""
pass
class InitFuncTest(unittest.TestCase):
def setUp(self) -> None:
self.test_data = range(10)
self.test_desired_output = [42, 43, 44, 45, 46, 47, 48, 49, 50, 51]
def test_no_init_func(self):
"""
If the init func is not provided, then `worker_state['test']` should fail
"""
with self.assertRaises(KeyError), WorkerPool(n_jobs=4, shared_objects=(None,), use_worker_state=True) as pool:
pool.map(self._f, range(10), worker_init=None)
def test_init_func(self):
"""
Test if init func is called. If it is, then `worker_state['test']` should be available. Due to the barrier we
know for sure that the init func should be called as many times as there are workers
"""
for n_jobs in [1, 3]:
shared_objects = Barrier(n_jobs), Value('i', 0)
with self.subTest(n_jobs=n_jobs), WorkerPool(n_jobs=n_jobs, shared_objects=shared_objects,
use_worker_state=True) as pool:
results = pool.map(self._f, self.test_data, worker_init=self._init, chunk_size=1)
self.assertListEqual(results, self.test_desired_output)
self.assertEqual(shared_objects[1].value, n_jobs)
def test_worker_lifespan(self):
"""
When workers have a limited lifespan they are spawned multiple times. Each time a worker starts it should call
the init function. Due to the chunk size we know for sure that the init func should be called at least once for
each task. However, when all tasks have been processed the workers are terminated and we don't know exactly how
many workers restarted. We only know for sure that the init func should be called between 10 and 10 + n_jobs
times
"""
for n_jobs in [1, 3]:
shared_objects = Barrier(n_jobs), Value('i', 0)
with self.subTest(n_jobs=n_jobs), WorkerPool(n_jobs=n_jobs, shared_objects=shared_objects,
use_worker_state=True) as pool:
results = pool.map(self._f, self.test_data, worker_init=self._init, chunk_size=1, worker_lifespan=1)
self.assertListEqual(results, self.test_desired_output)
self.assertGreaterEqual(shared_objects[1].value, 10)
self.assertLessEqual(shared_objects[1].value, 10 + n_jobs)
def test_error(self):
"""
When an exception occurs in the init function it should properly shut down
"""
with self.subTest("map"), self.assertRaises(ValueError), \
WorkerPool(n_jobs=4, shared_objects=(None,), use_worker_state=True) as pool:
pool.map(self._f, self.test_data, worker_init=self._init_error)
with self.subTest("apply"), self.assertRaises(ValueError), \
WorkerPool(n_jobs=2, shared_objects=(None,), use_worker_state=True) as pool:
pool.apply(self._f, args=(0,), worker_init=self._init_error)
def test_start_methods(self):
"""
Test for different start methods
"""
for start_method in TEST_START_METHODS:
with self.subTest(start_method=start_method), \
WorkerPool(n_jobs=2, use_worker_state=True, start_method=start_method) as pool:
shared_objects = pool.ctx.Barrier(2), pool.ctx.Value('i', 0)
pool.set_shared_objects(shared_objects)
results = pool.map(self._f, self.test_data, worker_init=self._init, chunk_size=1)
self.assertListEqual(results, self.test_desired_output)
self.assertEqual(shared_objects[1].value, 2)
@staticmethod
def _init(shared_objects, worker_state):
barrier, call_count = shared_objects
# Only wait for the other workers the first time around (it will hang when worker_lifespan=1, otherwise)
if call_count.value == 0:
barrier.wait()
with call_count.get_lock():
call_count.value += 1
worker_state['test'] = 42
@staticmethod
def _init_error(*_):
raise ValueError(":(")
@staticmethod
def _f(_, worker_state, x):
return worker_state['test'] + x
class ExitFuncTest(unittest.TestCase):
def setUp(self) -> None:
self.test_data = range(10)
self.test_desired_output = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
def test_no_exit_func(self):
"""
If the exit func is not provided, then exit results shouldn't be available
"""
shared_objects = Barrier(4), Value('i', 0)
with WorkerPool(n_jobs=4, shared_objects=shared_objects, use_worker_state=True) as pool:
results = pool.map(self._f1, range(10), worker_init=self._init, worker_exit=None)
self.assertListEqual(results, self.test_desired_output)
self.assertListEqual(pool.get_exit_results(), [])
def test_exit_func(self):
"""
Test if exit func is called. If it is, then exit results should be available. It should have as many elements
as the number of jobs and should have the right content.
"""
for n_jobs in [1, 3]:
shared_objects = Barrier(n_jobs), Value('i', 0)
with self.subTest(n_jobs=n_jobs), WorkerPool(n_jobs=n_jobs, shared_objects=shared_objects,
use_worker_state=True) as pool:
results = pool.map(self._f1, self.test_data, worker_init=self._init, worker_exit=self._exit)
self.assertListEqual(results, self.test_desired_output)
self.assertEqual(shared_objects[1].value, n_jobs)
self.assertEqual(len(pool.get_exit_results()), n_jobs)
self.assertEqual(sum(pool.get_exit_results()), sum(range(10)))
def test_worker_lifespan(self):
"""
When workers have a limited lifespan they are spawned multiple times. Each time a worker exits it should call
the exit function. Due to the chunk size we know for sure that the exit func should be called at least once for
each task. However, when all tasks have been processed the workers are terminated and we don't know exactly how
many workers restarted. We only know for sure that the exit func should be called between 10 and 10 + n_jobs
times
"""
for n_jobs in [1, 3]:
shared_objects = Barrier(n_jobs), Value('i', 0)
with self.subTest(n_jobs=n_jobs), WorkerPool(n_jobs=n_jobs, shared_objects=shared_objects,
use_worker_state=True) as pool:
results = pool.map(self._f1, self.test_data, worker_init=self._init, worker_exit=self._exit,
chunk_size=1, worker_lifespan=1)
self.assertListEqual(results, self.test_desired_output)
self.assertGreaterEqual(shared_objects[1].value, 10)
self.assertLessEqual(shared_objects[1].value, 10 + n_jobs)
self.assertEqual(len(pool.get_exit_results()), shared_objects[1].value)
self.assertEqual(sum(pool.get_exit_results()), sum(range(10)))
def test_exit_func_big_payload(self):
"""
Multiprocessing Pipes have a maximum buffer size (depending on the system it can be anywhere between 16-1024kb).
Results from the pipe need to be received from the other end, before the workers are joined. Otherwise the
process can hang indefinitely. Because exit results are fetched in a different way as regular results, we test
that here. We send a payload of 10_000kb.
"""
for n_jobs, worker_lifespan in product([1, 3], [None, 2]):
with self.subTest(n_jobs=n_jobs, worker_lifespan=worker_lifespan), WorkerPool(n_jobs=n_jobs) as pool:
results = pool.map(self._f2, self.test_data, worker_exit=self._exit_big_payloud, chunk_size=1,
worker_lifespan=worker_lifespan)
self.assertListEqual(results, self.test_desired_output)
self.assertTrue(bool(pool.get_exit_results()))
for exit_result in pool.get_exit_results():
self.assertEqual(len(exit_result), 10_000 * 1024)
def test_error(self):
"""
When an exception occurs in the exit function it should properly shut down
"""
for worker_lifespan in [None, 2]:
with self.subTest("map", worker_lifespan=worker_lifespan), self.assertRaises(ValueError), \
WorkerPool(n_jobs=4) as pool:
pool.map(self._f2, range(10), worker_lifespan=worker_lifespan, worker_exit=self._exit_error)
with self.subTest("apply"), self.assertRaises(ValueError), WorkerPool(n_jobs=2) as pool:
pool.apply(self._f2, args=(0,), worker_exit=self._exit_error)
pool.stop_and_join()
def test_start_methods(self):
"""
Test for different start methods
"""
for start_method in TEST_START_METHODS:
with self.subTest(start_method=start_method), \
WorkerPool(n_jobs=2, use_worker_state=True, start_method=start_method) as pool:
shared_objects = pool.ctx.Barrier(2), pool.ctx.Value('i', 0)
pool.set_shared_objects(shared_objects)
results = pool.map(self._f1, self.test_data, worker_init=self._init, worker_exit=self._exit)
self.assertListEqual(results, self.test_desired_output)
self.assertEqual(shared_objects[1].value, 2)
self.assertEqual(len(pool.get_exit_results()), 2)
self.assertEqual(sum(pool.get_exit_results()), sum(range(10)))
@staticmethod
def _init(shared_objects, worker_state):
barrier, call_count = shared_objects
# Only wait for the other workers the first time around (it will hang when worker_lifespan=1, otherwise)
if call_count.value == 0:
barrier.wait()
worker_state['count'] = 0
@staticmethod
def _f1(_, worker_state, x):
worker_state['count'] += x
return x
@staticmethod
def _f2(x):
return x
@staticmethod
def _exit(shared_objects, worker_state):
_, call_count = shared_objects
with call_count.get_lock():
call_count.value += 1
return worker_state['count']
@staticmethod
def _exit_big_payloud():
return np.random.bytes(10_000 * 1024)
@staticmethod
def _exit_error():
raise ValueError(":'(")
class DaemonTest(unittest.TestCase):
# This also tests nested WorkerPools. We only test spawn here as creating processes is not thread-safe
def setUp(self):
# Create some test data. Note that the regular map reads the inputs as a list of single tuples (one argument),
# whereas parallel.map sees it as a list of argument lists. Therefore we give the regular map a lambda function
# which mimics the parallel.map behavior.
self.test_data = list(enumerate([1, 2, 3, 5, 6, 9, 37, 42, 1337, 0, 3, 5, 0]))
self.test_desired_output = list(map(lambda _args: square(*_args), self.test_data))
def test_non_daemon_nested_workerpool(self):
"""
Tests nested WorkerPools when daemon==False, which should work
"""
with WorkerPool(n_jobs=4, daemon=False, start_method='spawn') as pool:
# Obtain results using nested WorkerPools
results = pool.map(self._square_daemon, ((X,) for X in repeat(self.test_data, 4)), chunk_size=1)
# Each of the results should match
for results_list in results:
self.assertIsInstance(results_list, list)
self.assertEqual(self.test_desired_output, results_list)
def test_daemon_nested_workerpool(self):
"""
Tests nested WorkerPools when daemon==True, which should not work
"""
with self.assertRaises(AssertionError), WorkerPool(n_jobs=4, daemon=True, start_method='spawn') as pool:
pool.map(self._square_daemon, ((X,) for X in repeat(self.test_data, 4)), chunk_size=1)
@staticmethod
def _square_daemon(x):
with WorkerPool(n_jobs=2) as pool:
return pool.map(square, x, chunk_size=1)
class CPUPinningTest(unittest.TestCase):
def setUp(self):
# Create some test data. Note that the regular map reads the inputs as a list of single tuples (one argument),
# whereas parallel.map sees it as a list of argument lists. Therefore we give the regular map a lambda function
# which mimics the parallel.map behavior.
self.test_data = list(enumerate([1, 2, 3, 5, 6, 9, 37, 42, 1337, 0, 3, 5, 0]))
self.test_desired_output = list(map(lambda _args: square(*_args), self.test_data))
def test_cpu_pinning(self):
"""
Test that when parameters are valid, nothing breaks and the pinning is actually happening
"""
for n_jobs, cpu_ids, expected_mask in [(None, [0], [[0]] * cpu_count()),
(None, [[0, 3]], [[0, 3]] * cpu_count()),
(1, [0], [[0]]),
(1, [[0, 3]], [[0, 3]]),
(2, [0], [[0], [0]]),
(2, [0, 1], [[0], [1]]),
(2, [[0, 3]], [[0, 3], [0, 3]]),
(2, [[0, 1], [0, 1]], [[0, 1], [0, 1]]),
(4, [0], [[0], [0], [0], [0]]),
(4, [0, 1, 2, 3], [[0], [1], [2], [3]]),
(4, [[0, 3]], [[0, 3], [0, 3], [0, 3], [0, 3]])]:
# The test has been designed for a system with at least 4 cores. We'll skip those test cases where the CPU
# IDs exceed the number of CPUs.
if cpu_ids is not None and np.array(cpu_ids).max(initial=0) >= cpu_count():
continue
with self.subTest(n_jobs=n_jobs, cpu_ids=cpu_ids), patch('mpire.pool.set_cpu_affinity') as p, \
WorkerPool(n_jobs=n_jobs, cpu_ids=cpu_ids) as pool:
# Verify results
results_list = pool.map(square, self.test_data)
self.assertIsInstance(results_list, list)
self.assertEqual(self.test_desired_output, results_list)
# Verify that when CPU pinning is used, it is called as many times as there are jobs and is called for
# each worker process ID
if cpu_ids is None:
self.assertEqual(p.call_args_list, [])
else:
self.assertEqual(p.call_count, pool.pool_params.n_jobs)
mask = [call[0][1] for call in p.call_args_list]
self.assertListEqual(mask, expected_mask)
def test_start_methods(self):
"""
Test for different start methods
"""
# This test will fail if there are less CPUs available than specified.
if cpu_count() >= 2:
n_jobs, cpu_ids, expected_mask = 2, [1, 0], [[1], [0]]
else:
n_jobs, cpu_ids, expected_mask = 1, [0], [[0]]
for start_method in TEST_START_METHODS:
if start_method == 'threading':
continue
with self.subTest(start_method=start_method), patch('mpire.pool.set_cpu_affinity') as p, \
WorkerPool(n_jobs=n_jobs, cpu_ids=cpu_ids, start_method=start_method) as pool:
# Verify results
results_list = pool.map(square, self.test_data)
self.assertIsInstance(results_list, list)
self.assertEqual(self.test_desired_output, results_list)
# Verify that CPU pinning is used as many times as there are jobs and is called for each worker process
# ID
self.assertEqual(p.call_count, pool.pool_params.n_jobs)
mask = [call[0][1] for call in p.call_args_list]
self.assertListEqual(mask, expected_mask)
# This won't work for threading
with self.assertRaises(AttributeError), WorkerPool(n_jobs=n_jobs, cpu_ids=cpu_ids,
start_method='threading') as pool:
pool.map(square, self.test_data)
class ProgressBarTest(unittest.TestCase):
"""
Print statements in these tests are intentional as it will print multiple progress bars
"""
def setUp(self):
# Create some test data. Note that the regular map reads the inputs as a list of single tuples (one argument),
# whereas parallel.map sees it as a list of argument lists. Therefore we give the regular map a lambda function
# which mimics the parallel.map behavior.
self.test_data = list(enumerate([1, 2, 3, 5, 6, 9, 37, 42, 1337, 0, 3, 5, 0]))
self.test_desired_output = list(map(lambda _args: square(*_args), self.test_data))
# Numpy test data
self.test_data_numpy = np.random.rand(100, 2)
self.test_desired_output_numpy = square_numpy(self.test_data_numpy)
self.test_data_len_numpy = len(self.test_data_numpy)
# Get original tqdm lock
self.original_tqdm_lock = tqdm.get_lock()
def tearDown(self):
# The TQDM lock is temporarily changed when using a progress bar in MPIRE, here we check if it is restored
# correctly afterwards.
self.assertEqual(tqdm.get_lock(), self.original_tqdm_lock)
def test_valid_progress_bars_regular_input(self):
"""
Valid progress bars are either False/True
"""
print()
for n_jobs, progress_bar in product([None, 1, 2], [True, False]):
with self.subTest(n_jobs=n_jobs), WorkerPool(n_jobs=n_jobs) as pool:
results_list = pool.map(square, self.test_data, progress_bar=progress_bar)
self.assertIsInstance(results_list, list)
self.assertEqual(self.test_desired_output, results_list)
def test_valid_progress_bars_numpy_input(self):
"""
Test with numpy, as that will change the number of tasks
"""
print()
for n_jobs, progress_bar in product([None, 1, 2], [True, False]):
# Should work just fine
with self.subTest(n_jobs=n_jobs, progress_bar=progress_bar), WorkerPool(n_jobs=n_jobs) as pool:
results = pool.map(square_numpy, self.test_data_numpy, progress_bar=progress_bar)
self.assertIsInstance(results, np.ndarray)
np.testing.assert_array_equal(results, self.test_desired_output_numpy)
def test_no_input_data(self):
"""
Test with empty iterable (this failed before)
"""
print()
with WorkerPool() as pool:
self.assertListEqual(pool.map(square, [], progress_bar=True), [])
def test_progress_bar_options(self):
"""
Test different progress bar options. Wrong inputs are tested in test_params
"""
print()
for progress_bar_options in [{"unit": "km"}, {"unit": "s", "desc": "I'm a pbar!"}, {"colour": "green"}]:
with self.subTest(progress_bar_options=progress_bar_options), WorkerPool(n_jobs=2) as pool:
results = pool.map(square, self.test_data, progress_bar=True, progress_bar_options=progress_bar_options)
self.assertIsInstance(results, list)
self.assertEqual(self.test_desired_output, results)
def test_start_methods(self):
"""
Test for different start methods
"""
print()
for start_method in TEST_START_METHODS:
with self.subTest(start_method=start_method), WorkerPool(n_jobs=2, start_method=start_method) as pool:
results_list = pool.map(square, self.test_data, progress_bar=True)
self.assertIsInstance(results_list, list)
self.assertEqual(self.test_desired_output, results_list)
def test_progres_bar_styles(self):
"""
Test different progress bar styles. The std style will give updates by overwriting the previous line, so all
progress update lines will be there (including the 0% from the start). The rich progress bar updates the
widget, so the 0% won't be there. The notebook won't update correctly in a terminal, which is fine. This means
it won't show the 100% here. Finally, the dashboard style won't give any output.
"""
print()
for progress_bar_style, expected_outputs in [
(None, ["None", "0%", "100%", "13/13"]),
('std', ["std", "0%", "100%", "13/13"]),
('rich', ["rich", "100%", "13/13"]),
('notebook', ["notebook", "0%", "0/13"]),
('dashboard', []),
]:
# Some progress bars write to stdout, others to stderr. We'll capture both.
output = io.StringIO()
with self.subTest(progress_bar_style=progress_bar_style), redirect_stderr(output), \
redirect_stdout(output), WorkerPool(n_jobs=2) as pool:
results_list = pool.map(square, self.test_data, progress_bar=True,
progress_bar_style=progress_bar_style,
progress_bar_options={"desc": progress_bar_style or "None"})
self.assertIsInstance(results_list, list)
self.assertEqual(self.test_desired_output, results_list)
# Check outputs
for expected_output in expected_outputs:
self.assertIn(expected_output, output.getvalue())
if not expected_outputs:
self.assertEqual(output.getvalue(), '')
class KeepAliveTest(unittest.TestCase):
"""
In these tests we make use of a barrier. This barrier ensures that we increase the counter for each worker. If it
wasn't there there's a chance that the first, say 3, workers already performed all the available tasks, while the
4th worker was still spinning up. In that case the poison pill would be inserted before the fourth worker could even
start a task and therefore couldn't increase the counter value.
"""
def setUp(self):
# Create some test data
self.test_data = [1, 2, 3, 5, 6, 9, 37, 42, 1337, 0, 3, 5, 0]
self.test_desired_output_f1 = [x * 2 for x in self.test_data]
self.test_desired_output_f2 = [x * 3 for x in self.test_data]
def test_dont_keep_alive(self):
"""
When keep_alive is set to False it should restart workers between map calls. This means the counter is updated
each time as well.
"""
for n_jobs in [1, 3]:
barrier = Barrier(n_jobs)
counter = Value('i', 0)
shared = barrier, counter
with self.subTest(n_jobs=n_jobs), \
WorkerPool(n_jobs=n_jobs, shared_objects=shared, use_worker_state=True, keep_alive=False) as pool:
self.assertListEqual(pool.map(self._f1, self.test_data, worker_init=self._init1),
self.test_desired_output_f1)
self.assertEqual(counter.value, n_jobs)
barrier.reset()
self.assertListEqual(pool.map(self._f1, self.test_data, worker_init=self._init1),
self.test_desired_output_f1)
self.assertEqual(counter.value, n_jobs * 2)
barrier.reset()
self.assertListEqual(pool.map(self._f1, self.test_data, worker_init=self._init1),
self.test_desired_output_f1)
self.assertEqual(counter.value, n_jobs * 3)
barrier.reset()
self.assertListEqual(pool.map(self._f1, self.test_data, worker_init=self._init1),
self.test_desired_output_f1)
self.assertEqual(counter.value, n_jobs * 4)
def test_keep_alive(self):
"""
When keep_alive is set to True it should reuse existing workers between map calls. This means the counter is
only updated the first time.
"""
for n_jobs in [1, 3]:
barrier = Barrier(n_jobs)
counter = Value('i', 0)
shared = barrier, counter
with self.subTest(n_jobs=n_jobs), \
WorkerPool(n_jobs=n_jobs, shared_objects=shared, use_worker_state=True, keep_alive=True) as pool:
self.assertListEqual(pool.map(self._f1, self.test_data, worker_init=self._init1),
self.test_desired_output_f1)
self.assertEqual(counter.value, n_jobs)
barrier.reset()
self.assertListEqual(list(pool.imap(self._f1, self.test_data, worker_init=self._init1)),
self.test_desired_output_f1)
self.assertEqual(counter.value, n_jobs)
barrier.reset()
self.assertListEqual(pool.map(self._f1, self.test_data, worker_init=self._init1),
self.test_desired_output_f1)
self.assertEqual(counter.value, n_jobs)
def test_keep_alive_map_params_change(self):
"""
When keep_alive is set to True it should reuse existing workers between map calls, even when the called
function, init or exit functions, or the worker lifespan changes
"""
for n_jobs in [1, 3]:
barrier = Barrier(n_jobs)
counter = Value('i', 0)
shared = barrier, counter
with self.subTest(n_jobs=n_jobs), warnings.catch_warnings(), \
WorkerPool(n_jobs=n_jobs, shared_objects=shared, use_worker_state=True, keep_alive=True) as pool:
warnings.simplefilter('ignore')
self.assertListEqual(pool.map(self._f1, self.test_data, worker_lifespan=100, worker_init=self._init1,
worker_exit=self._exit1),
self.test_desired_output_f1)
self.assertEqual(counter.value, n_jobs)
barrier.reset()
self.assertListEqual(list(pool.imap(self._f2, self.test_data, worker_lifespan=100,
worker_init=self._init1, worker_exit=self._exit2)),
self.test_desired_output_f2)
self.assertEqual(counter.value, n_jobs)
barrier.reset()
self.assertListEqual(pool.map(self._f2, self.test_data, worker_lifespan=200, worker_init=self._init2,
worker_exit=self._exit1),
self.test_desired_output_f2)
self.assertEqual(counter.value, n_jobs)
barrier.reset()
self.assertListEqual(pool.map(self._f1, self.test_data, worker_lifespan=100, worker_init=self._init1,
worker_exit=None),
self.test_desired_output_f1)
self.assertEqual(counter.value, n_jobs)
def test_start_methods(self):
"""
Test for different start methods
"""
for start_method in TEST_START_METHODS:
with self.subTest(start_method=start_method), \
WorkerPool(n_jobs=2, use_worker_state=True, keep_alive=True, start_method=start_method) as pool:
barrier = pool.ctx.Barrier(2)
counter = pool.ctx.Value('i', 0)
pool.set_shared_objects((barrier, counter))
self.assertListEqual(pool.map(self._f1, self.test_data, worker_init=self._init1),
self.test_desired_output_f1)
self.assertEqual(counter.value, 2)
barrier.reset()
self.assertListEqual(list(pool.imap(self._f1, self.test_data, worker_init=self._init1)),
self.test_desired_output_f1)
self.assertEqual(counter.value, 2)
barrier.reset()
self.assertListEqual(pool.map(self._f1, self.test_data, worker_init=self._init1),
self.test_desired_output_f1)
self.assertEqual(counter.value, 2)
@staticmethod
def _init1(_, worker_state):
worker_state['already_counted'] = False
@staticmethod
def _init2(_, worker_state):
worker_state['already_counted'] = False
worker_state[4] = 2
@staticmethod
def _f1(shared, worker_state, x):
"""
Function that waits for all workers to spin up and increases the counter by one only once per worker,
returns x * 2
"""
barrier, counter = shared
if not worker_state['already_counted']:
with counter.get_lock():
counter.value += 1
worker_state['already_counted'] = True
barrier.wait()
return x * 2
@staticmethod
def _f2(shared, worker_state, x):
"""
Function that waits for all workers to spin up and increases the counter by one only once per worker,
returns x * 3
"""
barrier, counter = shared
if not worker_state['already_counted']:
with counter.get_lock():
counter.value += 1
worker_state['already_counted'] = True
barrier.wait()
return x * 3
@staticmethod
def _exit1(_, worker_state):
return worker_state['already_counted']
@staticmethod
def _exit2(_, worker_state):
pass
class ExceptionTest(unittest.TestCase):
def setUp(self):
# Create some test data. Note that the regular map reads the inputs as a list of single tuples (one argument),
# whereas parallel.map sees it as a list of argument lists. Therefore we give the regular map a lambda function
# which mimics the parallel.map behavior.
self.test_data = list(enumerate([1, 2, 3, 5, 6, 9, 37, 42, 1337, 0, 3, 5, 0]))
self.test_desired_output = list(map(lambda _args: square(*_args), self.test_data))
self.test_data_len = len(self.test_data)
# Get original tqdm lock
self.original_tqdm_lock = tqdm.get_lock()
def tearDown(self):
# The TQDM lock is temporarily changed when using a progress bar in MPIRE, here we check if it is restored
# correctly afterwards.
self.assertEqual(tqdm.get_lock(), self.original_tqdm_lock)
def test_exceptions(self):
"""
Tests if MPIRE can handle exceptions well
"""
# This print statement is intentional as it will print multiple progress bars
print()
for n_jobs, n_tasks_max_active, worker_lifespan, progress_bar in [
(1, None, None, False),
(3, None, None, False),
(3, 1, None, False),
(3, None, 1, False),
(3, None, None, True),
(3, 1, None, True),
(3, None, 1, True),
(3, 1, 1, True)
]:
print(f"========== {n_jobs}, {n_tasks_max_active}, {worker_lifespan}, {progress_bar} ==========")
with WorkerPool(n_jobs=n_jobs) as pool:
# Should work for map like functions
print("----- square_raises, map -----")
with self.subTest(n_jobs=n_jobs, n_tasks_max_active=n_tasks_max_active, worker_lifespan=worker_lifespan,
progress_bar=progress_bar, function='square_raises', map='map'), \
self.assertRaises(ValueError):
pool.map(self._square_raises, self.test_data, max_tasks_active=n_tasks_max_active,
worker_lifespan=worker_lifespan, progress_bar=progress_bar)
# Should work for imap like functions
print("----- square_raises, imap -----")
with self.subTest(n_jobs=n_jobs, n_tasks_max_active=n_tasks_max_active, worker_lifespan=worker_lifespan,
progress_bar=progress_bar, function='square_raises', map='imap'), \
self.assertRaises(ValueError):
list(pool.imap_unordered(self._square_raises, self.test_data, max_tasks_active=n_tasks_max_active,
worker_lifespan=worker_lifespan, progress_bar=progress_bar))
# Should work for map like functions
print("----- square_raises_on_idx, map -----")
with self.subTest(n_jobs=n_jobs, n_tasks_max_active=n_tasks_max_active, worker_lifespan=worker_lifespan,
progress_bar=progress_bar, function='square_raises_on_idx', map='map'), \
self.assertRaises(ValueError):
pool.map(self._square_raises_on_idx, self.test_data, max_tasks_active=n_tasks_max_active,
worker_lifespan=worker_lifespan, progress_bar=progress_bar)
# Should work for imap like functions
print("----- square_raises_on_idx, imap -----")
with self.subTest(n_jobs=n_jobs, n_tasks_max_active=n_tasks_max_active, worker_lifespan=worker_lifespan,
progress_bar=progress_bar, function='square_raises_on_idx', map='imap'), \
self.assertRaises(ValueError):
list(pool.imap_unordered(self._square_raises_on_idx, self.test_data,
max_tasks_active=n_tasks_max_active, worker_lifespan=worker_lifespan,
progress_bar=progress_bar))
def test_start_methods(self):
"""
Test for different start methods
"""
print()
for start_method, progress_bar in product(TEST_START_METHODS, [False, True]):
print(f"========== {start_method}, {progress_bar} ==========")
if RUNNING_WINDOWS and progress_bar and start_method == 'threading':
print("Not yet supported on Windows")
continue
with self.subTest(start_method=start_method, progress_bar=progress_bar), \
WorkerPool(n_jobs=2, start_method=start_method) as pool:
# Should work for map like functions
print("----- square_raises, map -----")
with self.subTest(function='square_raises', map='map'), self.assertRaises(ValueError):
pool.map(self._square_raises, self.test_data, progress_bar=progress_bar)
# Should work for imap like functions
print("----- square_raises, imap -----")
with self.subTest(function='square_raises', map='imap'), self.assertRaises(ValueError):
list(pool.imap_unordered(self._square_raises, self.test_data, progress_bar=progress_bar))
if not progress_bar:
# Should work for apply like functions
print("----- square_raises, apply -----")
with self.subTest(function='square_raises', func='apply'), self.assertRaises(ValueError):
pool.apply(self._square_raises, self.test_data[0])
# Should work for map like functions
print("----- square_raises_on_idx, map -----")
with self.subTest(function='square_raises_on_idx', map='map'), self.assertRaises(ValueError):
pool.map(self._square_raises_on_idx, self.test_data, progress_bar=progress_bar)
# Should work for imap like functions
print("----- square_raises_on_idx, imap -----")
with self.subTest(function='square_raises_on_idx', map='imap'), self.assertRaises(ValueError):
list(pool.imap_unordered(self._square_raises_on_idx, self.test_data, progress_bar=progress_bar))
def test_defunct_processes_exit(self):
"""
Tests if MPIRE correctly shuts down after process becomes defunct using exit()
"""
print()
for n_jobs, progress_bar, worker_lifespan in [(1, False, None),
(3, True, 1),
(3, False, 3)]:
for start_method in TEST_START_METHODS:
# Progress bar on Windows + threading is not supported right now
if RUNNING_WINDOWS and start_method == 'threading' and progress_bar:
continue
print(f"========== {start_method}, {n_jobs}, {progress_bar}, {worker_lifespan} ==========")
with self.subTest(n_jobs=n_jobs, progress_bar=progress_bar, worker_lifespan=worker_lifespan,
start_method=start_method), self.assertRaises(SystemExit), \
WorkerPool(n_jobs=n_jobs, start_method=start_method) as pool:
pool.map(self._exit, range(100), progress_bar=progress_bar, worker_lifespan=worker_lifespan)
def test_defunct_processes_kill(self):
"""
Tests if MPIRE correctly shuts down after one process becomes defunct using os.kill().
We kill worker 0 and to be sure it's alive we set an event object and then go in an infinite loop. The kill
thread waits until the event is set and then kills the worker. The other workers are also ensured to have done
something so we can test what happens during restarts
"""
print()
for n_jobs, progress_bar, worker_lifespan in [(1, False, None),
(3, True, 1),
(3, False, 3)]:
for start_method in TEST_START_METHODS:
# Can't kill threads
if start_method == 'threading':
continue
print(f"========== {start_method}, {n_jobs}, {progress_bar}, {worker_lifespan} ==========")
with self.subTest(n_jobs=n_jobs, progress_bar=progress_bar, worker_lifespan=worker_lifespan,
start_method=start_method), self.assertRaises(RuntimeError), \
WorkerPool(n_jobs=n_jobs, pass_worker_id=True, start_method=start_method) as pool:
events = [pool.ctx.Event() for _ in range(n_jobs)]
kill_thread = Thread(target=self._kill_process, args=(events[0], pool))
kill_thread.start()
pool.set_shared_objects(events)
pool.map(self._worker_0_sleeps_others_square, range(100), progress_bar=progress_bar,
worker_lifespan=worker_lifespan, chunk_size=1)
def test_dill_deadlock(self):
"""
Exceptions on the queue need to be flushed before the worker is terminated. This is one example where it used
to cause a deadlock (https://github.com/Slimmer-AI/mpire/issues/56)
"""
data = [(x, y, z) for x, y, z in zip(range(0, 100), range(42, 142), range(10, -90, -1))]
with self.assertRaises(ZeroDivisionError), WorkerPool(n_jobs=5, use_dill=True) as pool:
for _ in pool.imap(lambda x, y, z: x * y / z, data):
pass
@staticmethod
def _square_raises(_, x):
raise ValueError(x)
@staticmethod
def _square_raises_on_idx(idx, x):
if idx == 5:
raise ValueError(x)
else:
return idx, x * x
@staticmethod
def _exit(_):
exit()
@staticmethod
def _worker_0_sleeps_others_square(worker_id, events, x):
"""
Worker 0 waits until the other workers have at least spun up and then sets her event and sleeps
"""
if worker_id == 0:
[event.wait() for event in events[1:]]
events[0].set()
while True:
pass
else:
events[worker_id].set()
return x * x
@staticmethod
def _kill_process(event, pool):
"""
Wait for event and kill
"""
event.wait()
pool._workers[0].terminate()
class TimeoutTest(unittest.TestCase):
def setUp(self):
# Create some test data
self.test_data = [1, 2, 3]
def test_worker_init_timeout(self):
"""
Checks if the worker_init timeout is properly triggered
"""
print()
for start_method in TEST_START_METHODS:
print(f"========== {start_method}, well below timeout ==========")
with self.subTest('Well below timeout', start_method=start_method), \
WorkerPool(2, start_method=start_method) as pool:
self.assertListEqual(pool.map(self._f1, self.test_data, worker_init=self._init1,
worker_init_timeout=100), self.test_data)
print(f"========== {start_method}, exceeding timeout, map ==========")
with self.subTest('Exceeding timeout, map', start_method=start_method), \
WorkerPool(2, start_method=start_method) as pool, self.assertRaises(TimeoutError):
pool.map(self._f1, self.test_data, worker_init=self._init2, worker_init_timeout=0.01)
print(f"========== {start_method}, exceeding timeout, imap ==========")
with self.subTest('Exceeding timeout, imap', start_method=start_method), \
WorkerPool(2, start_method=start_method) as pool, self.assertRaises(TimeoutError):
for _ in pool.imap(self._f1, self.test_data, worker_init=self._init2, worker_init_timeout=0.01):
pass
print(f"========== {start_method}, exceeding timeout, apply ==========")
with self.subTest('Exceeding timeout, apply', start_method=start_method), \
WorkerPool(2, start_method=start_method) as pool, self.assertRaises(TimeoutError):
pool.apply(self._f1, self.test_data[0], worker_init=self._init2, worker_init_timeout=0.01)
def test_worker_task_timeout(self):
"""
Checks if the worker_init timeout is properly triggered
"""
print()
for start_method in TEST_START_METHODS:
print(f"========== {start_method}, well below timeout ==========")
with self.subTest('Well below timeout', start_method=start_method), \
WorkerPool(2, start_method=start_method) as pool:
self.assertListEqual(pool.map(self._f1, self.test_data, task_timeout=100), self.test_data)
print(f"========== {start_method}, exceeding timeout, map ==========")
with self.subTest('Exceeding timeout, map', start_method=start_method), \
WorkerPool(2, start_method=start_method) as pool, self.assertRaises(TimeoutError):
pool.map(self._f2, self.test_data, task_timeout=0.01)
print(f"========== {start_method}, exceeding timeout, imap ==========")
with self.subTest('Exceeding timeout, imap', start_method=start_method), \
WorkerPool(2, start_method=start_method) as pool, self.assertRaises(TimeoutError):
for _ in pool.imap(self._f2, self.test_data, task_timeout=0.01):
pass
print(f"========== {start_method}, exceeding timeout, apply ==========")
with self.subTest('Exceeding timeout, apply', start_method=start_method), \
WorkerPool(2, start_method=start_method) as pool, self.assertRaises(TimeoutError):
pool.apply(self._f2, self.test_data[0], task_timeout=0.01)
def test_worker_exit_timeout(self):
"""
Checks if the worker_exit timeout is properly triggered
"""
print()
for start_method in TEST_START_METHODS:
print(f"========== {start_method}, well below timeout ==========")
with self.subTest('Well below timeout', start_method=start_method), \
WorkerPool(2, start_method=start_method) as pool:
self.assertListEqual(pool.map(self._f1, self.test_data, worker_exit=self._exit1,
worker_exit_timeout=100), self.test_data)
print(f"========== {start_method}, exceeding timeout, map ==========")
with self.subTest('Exceeding timeout, map', start_method=start_method), \
WorkerPool(2, start_method=start_method) as pool, self.assertRaises(TimeoutError):
pool.map(self._f1, self.test_data, worker_exit=self._exit2, worker_exit_timeout=0.01)
print(f"========== {start_method}, exceeding timeout, imap ==========")
with self.subTest('Exceeding timeout, imap', start_method=start_method), \
WorkerPool(2, start_method=start_method) as pool, self.assertRaises(TimeoutError):
for _ in pool.imap(self._f1, self.test_data, worker_exit=self._exit2, worker_exit_timeout=0.01):
pass
print(f"========== {start_method}, exceeding timeout, apply ==========")
with self.subTest('Exceeding timeout, apply', start_method=start_method), \
WorkerPool(2, start_method=start_method) as pool, self.assertRaises(TimeoutError):
pool.apply(self._f1, self.test_data[0], worker_exit=self._exit2, worker_exit_timeout=0.01)
pool.stop_and_join()
def test_apply_async_multiple_task_timeout(self):
""" Test that some apply_async() tasks time out correctly and don't kill the whole pool """
print()
for start_method in tqdm(TEST_START_METHODS):
with WorkerPool(n_jobs=3, start_method=start_method) as pool:
results = [pool.apply_async(self._f3, (i,), task_timeout=0.1) for i in range(6)]
for i, result in enumerate(results):
if i % 2 == 0:
self.assertEqual(result.get(), i)
else:
with self.assertRaises(TimeoutError):
result.get()
@staticmethod
def _init1():
pass
@staticmethod
def _init2():
time.sleep(1)
@staticmethod
def _f1(x):
return x
@staticmethod
def _f2(x):
time.sleep(1)
return x
@staticmethod
def _exit1():
pass
@staticmethod
def _exit2():
time.sleep(1)
@staticmethod
def _f3(x):
if x % 2 == 0:
return x
else:
time.sleep(1)
return x
class OrderTasksTest(unittest.TestCase):
"""
Tests if the tasks are properly ordered
"""
def setUp(self):
# Create some test data
self.test_data = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]
def test_order_tasks(self):
"""
Checks if the tasks are properly ordered
"""
for start_method in TEST_START_METHODS:
with self.subTest(start_method=start_method, chunk_size=1), \
WorkerPool(4, start_method=start_method, pass_worker_id=True, use_worker_state=True,
order_tasks=True) as pool:
pool.map_unordered(self._f, self.test_data, worker_init=self._init, worker_exit=self._exit,
chunk_size=1)
exit_results = sorted(pool.get_exit_results(), key=lambda state: state['worker_id'])
self.assertListEqual(exit_results, [{'worker_id': 0, 'tasks': [1, 5, 9, 13, 17]},
{'worker_id': 1, 'tasks': [2, 6, 10, 14, 18]},
{'worker_id': 2, 'tasks': [3, 7, 11, 15, 19]},
{'worker_id': 3, 'tasks': [4, 8, 12, 16, 20]}])
with self.subTest(start_method=start_method, chunk_size=3), \
WorkerPool(4, start_method=start_method, pass_worker_id=True, use_worker_state=True,
order_tasks=True) as pool:
pool.map_unordered(self._f, self.test_data, worker_init=self._init, worker_exit=self._exit,
chunk_size=3)
exit_results = sorted(pool.get_exit_results(), key=lambda state: state['worker_id'])
self.assertListEqual(exit_results, [{'worker_id': 0, 'tasks': [1, 2, 3, 13, 14, 15]},
{'worker_id': 1, 'tasks': [4, 5, 6, 16, 17, 18]},
{'worker_id': 2, 'tasks': [7, 8, 9, 19, 20]},
{'worker_id': 3, 'tasks': [10, 11, 12]}])
def test_order_tasks_twice(self):
"""
Checks if the tasks are properly ordered the second time around as well.
"""
for start_method in TEST_START_METHODS:
with self.subTest(start_method=start_method, chunk_size=3, keep_alive=True), \
WorkerPool(4, start_method=start_method, pass_worker_id=True, use_worker_state=True,
order_tasks=True, keep_alive=True) as pool:
pool.map_unordered(self._f, self.test_data, worker_init=self._init, worker_exit=self._exit,
chunk_size=3)
pool.map_unordered(self._f, self.test_data, worker_init=self._init, worker_exit=self._exit,
chunk_size=3)
pool.stop_and_join()
exit_results = sorted(pool.get_exit_results(), key=lambda state: state['worker_id'])
self.assertListEqual(exit_results,
[{'worker_id': 0, 'tasks': [1, 2, 3, 13, 14, 15, 1, 2, 3, 13, 14, 15]},
{'worker_id': 1, 'tasks': [4, 5, 6, 16, 17, 18, 4, 5, 6, 16, 17, 18]},
{'worker_id': 2, 'tasks': [7, 8, 9, 19, 20, 7, 8, 9, 19, 20]},
{'worker_id': 3, 'tasks': [10, 11, 12, 10, 11, 12]}])
@staticmethod
def _init(wid, state):
state['worker_id'] = wid
state['tasks'] = []
@staticmethod
def _f(_, state, x):
state['tasks'].append(x)
@staticmethod
def _exit(_, state):
return state
|