File: test_utils.py

package info (click to toggle)
mpire 2.10.2-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 2,064 kB
  • sloc: python: 5,473; makefile: 209; javascript: 182
file content (469 lines) | stat: -rw-r--r-- 23,576 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
import types
import unittest
from itertools import chain, product
from multiprocessing import cpu_count
from unittest.mock import patch

import numpy as np

from mpire.utils import apply_numpy_chunking, chunk_tasks, format_seconds, get_n_chunks, make_single_arguments, TimeIt


class ChunkTasksTest(unittest.TestCase):

    def test_no_chunk_size_no_n_splits_provided(self):
        """
        Test that a ValueError is raised when no chunk_size and n_splits are provided
        """
        with self.assertRaises(ValueError):
            next(chunk_tasks([]))

    def test_generator_without_iterable_len(self):
        """
        Test that a ValueError is raised when a generator is provided without iterable_len
        """
        with self.assertRaises(ValueError):
            next(chunk_tasks(iter([]), n_splits=1))

    def test_chunk_size_has_priority_over_n_splits(self):
        """
        Test that chunk_size is prioritized over n_splits
        """
        chunks = list(chunk_tasks(range(4), chunk_size=4, n_splits=4))
        self.assertEqual(len(chunks), 1)
        self.assertEqual(len(chunks[0]), 4)
        self.assertEqual(list(range(4)), list(chain.from_iterable(chunks)))

    def test_empty_input(self):
        """
        Test that the chunker is an empty generator for an empty input iterable
        """
        with self.subTest('list input'):
            chunks = list(chunk_tasks([], n_splits=5))
            self.assertEqual(len(chunks), 0)

        with self.subTest('generator/iterator input'):
            chunks = list(chunk_tasks(iter([]), iterable_len=0, n_splits=5))
            self.assertEqual(len(chunks), 0)

    def test_iterable_len_doesnt_match_input_size(self):
        """
        Test for cases where iterable_len does and does not match the number of arguments (it should work fine)
        """
        num_args = 10
        for iter_len in [5, 10, 20]:
            expected_args_sum = min(iter_len, num_args)

            # Test for normal list (range is considered a normal list as it implements __len__ and such)
            with self.subTest(iter_len=iter_len, input='list'):
                chunks = list(chunk_tasks(range(num_args), iterable_len=iter_len, n_splits=1))
                total_args = sum(map(len, chunks))
                self.assertEqual(total_args, expected_args_sum)
                self.assertEqual(list(range(expected_args_sum)), list(chain.from_iterable(chunks)))

            # Test for an actual generator (range does not really behave like one)
            with self.subTest(iter_len=iter_len, input='generator/iterator'):
                chunks = list(chunk_tasks(iter(range(num_args)), iterable_len=iter_len, n_splits=1))
                total_args = sum(map(len, chunks))
                self.assertEqual(total_args, expected_args_sum)
                self.assertEqual(list(range(expected_args_sum)), list(chain.from_iterable(chunks)))

    def test_n_splits(self):
        """
        Test different values of n_splits: len(args) {<, ==, >} n_splits
        """
        n_splits = 5
        for num_args in [n_splits - 1, n_splits, n_splits + 1]:
            expected_n_chunks = min(n_splits, num_args)

            # Test for normal list (range is considered a normal list as it implements __len__ and such)
            with self.subTest(num_args=num_args, input='list'):
                chunks = list(chunk_tasks(range(num_args), n_splits=n_splits))
                self.assertEqual(len(chunks), expected_n_chunks)
                self.assertEqual(list(range(num_args)), list(chain.from_iterable(chunks)))

            # Test for an actual generator (range does not really behave like one)
            with self.subTest(num_args=num_args, input='generator/iterator'):
                chunks = list(chunk_tasks(iter(range(num_args)), iterable_len=num_args, n_splits=n_splits))
                self.assertEqual(len(chunks), expected_n_chunks)
                self.assertEqual(list(range(num_args)), list(chain.from_iterable(chunks)))

    def test_chunk_size(self):
        """
        Test that chunks are of the right size if chunk_size is provided
        """
        chunk_size = 3
        for num_args in [chunk_size - 1, chunk_size, chunk_size + 1]:

            # Test for normal list (range is considered a normal list as it implements __len__ and such)
            with self.subTest(num_args=num_args, input='list'):
                chunks = list(chunk_tasks(range(num_args), chunk_size=chunk_size))
                for chunk in chunks[:-1]:
                    self.assertEqual(len(chunk), chunk_size)
                self.assertLessEqual(len(chunks[-1]), chunk_size)
                self.assertEqual(list(range(num_args)), list(chain.from_iterable(chunks)))

            # Test for an actual generator (range does not really behave like one)
            with self.subTest(num_args=num_args, input='generator/iterator'):
                chunks = list(chunk_tasks(iter(range(num_args)), chunk_size=chunk_size))
                for chunk in chunks[:-1]:
                    self.assertEqual(len(chunk), chunk_size)
                self.assertLessEqual(len(chunks[-1]), chunk_size)
                self.assertEqual(list(range(num_args)), list(chain.from_iterable(chunks)))


class ApplyNumpyChunkingTest(unittest.TestCase):

    """
    This function simply calls other, already tested, functions in succession. We do test the individual parameter
    influence, but interactions between them are skipped
    """

    def setUp(self):
        self.test_data_numpy = np.random.rand(100, 2)

    def test_iterable_len(self):
        """
        Test that iterable_len is adhered to. When iterable_len < len(input) it should reduce the input size. If higher
        or None it should take the entire input
        """
        for iterable_len, expected_size in [(5, 5), (150, 100), (None, 100)]:
            with self.subTest(iterable_len=iterable_len):
                iterable_of_args, iterable_len_, chunk_size, n_splits = apply_numpy_chunking(
                    self.test_data_numpy, iterable_len=iterable_len, n_splits=1
                )

                # Materialize generator and test contents
                iterable_of_args = list(iterable_of_args)
                self.assertEqual(len(iterable_of_args), 1)
                self.assertIsInstance(iterable_of_args[0][0], np.ndarray)
                np.testing.assert_array_equal(iterable_of_args[0][0], self.test_data_numpy[:expected_size])

                # Test other output
                self.assertEqual(iterable_len_, 1)
                self.assertEqual(chunk_size, 1)
                self.assertIsNone(n_splits)

    def test_chunk_size(self):
        """
        Test that chunk_size works as expected. Note that chunk_size trumps n_splits
        """
        for chunk_size, expected_n_chunks in [(1, 100), (3, 34), (200, 1), (None, 1)]:
            with self.subTest(chunk_size=chunk_size):
                iterable_of_args, iterable_len, chunk_size_, n_splits = apply_numpy_chunking(
                    self.test_data_numpy, chunk_size=chunk_size, n_splits=1
                )

                # Materialize generator and test contents. The chunks should be of size chunk_size (expect for the last
                # chunk which can be smaller)
                iterable_of_args = list(iterable_of_args)
                self.assertEqual(len(iterable_of_args), expected_n_chunks)
                chunk_size = chunk_size or 100
                for chunk_idx, chunk in enumerate(iterable_of_args):
                    self.assertIsInstance(chunk[0], np.ndarray)
                    np.testing.assert_array_equal(chunk[0], self.test_data_numpy[chunk_idx * chunk_size:
                                                                                 (chunk_idx + 1) * chunk_size])

                # Test other output
                self.assertEqual(iterable_len, expected_n_chunks)
                self.assertEqual(chunk_size_, 1)
                self.assertIsNone(n_splits)

    def test_n_splits(self):
        """
        Test that n_splits works as expected.
        """
        for n_splits, expected_n_chunks in [(1, 1), (3, 3), (150, 100)]:
            with self.subTest(n_splits=n_splits):
                iterable_of_args, iterable_len, chunk_size, n_splits_ = apply_numpy_chunking(
                    self.test_data_numpy, n_splits=n_splits
                )

                # Materialize generator and test contents. We simply test if every row of the original input occurs in
                # the chunks
                iterable_of_args = list(iterable_of_args)
                self.assertEqual(len(iterable_of_args), expected_n_chunks)
                offset = 0
                for chunk in iterable_of_args:
                    self.assertIsInstance(chunk[0], np.ndarray)
                    np.testing.assert_array_equal(chunk[0], self.test_data_numpy[offset:offset + len(chunk[0])])
                    offset += len(chunk[0])
                self.assertEqual(offset, 100)

                # Test other output
                self.assertEqual(iterable_len, expected_n_chunks)
                self.assertEqual(chunk_size, 1)
                self.assertIsNone(n_splits_)

        # chunk_size and n_splits can't be both None
        with self.subTest(n_splits=None), self.assertRaises(ValueError):
            iterable_of_args, *_ = apply_numpy_chunking(self.test_data_numpy, n_splits=None)
            list(iterable_of_args)

    def test_n_jobs(self):
        """
        Test that n_jobs works as expected. When chunk_size and n_splits are both None, n_jobs * 4 is passed on as
        n_splits
        """
        for n_jobs, expected_n_chunks in [(1, 4), (3, 12), (40, 100), (150, 100)]:
            with self.subTest(n_jobs=n_jobs):
                iterable_of_args, iterable_len, chunk_size, n_splits_ = apply_numpy_chunking(
                    self.test_data_numpy, n_jobs=n_jobs
                )

                # Materialize generator and test contents. We simply test if every row of the original input occurs in
                # the chunks
                iterable_of_args = list(iterable_of_args)
                self.assertEqual(len(iterable_of_args), expected_n_chunks)
                offset = 0
                for chunk in iterable_of_args:
                    self.assertIsInstance(chunk[0], np.ndarray)
                    np.testing.assert_array_equal(chunk[0], self.test_data_numpy[offset:offset + len(chunk[0])])
                    offset += len(chunk[0])
                self.assertEqual(offset, 100)

                # Test other output
                self.assertEqual(iterable_len, expected_n_chunks)
                self.assertEqual(chunk_size, 1)
                self.assertIsNone(n_splits_)


class GetNChunksTest(unittest.TestCase):

    def setUp(self):
        self.test_data = [1, 2, 3, 5, 6, 9, 37, 42, 1337, 0, 3, 5, 0]
        self.test_data_numpy = np.random.rand(100, 2)

    def test_everything_none(self):
        """
        When everything is None we should use cpu_count * 4 as number of splits. We have to take the number of tasks
        into account
        """
        with self.subTest(input='list'):
            self.assertEqual(get_n_chunks(self.test_data, iterable_len=None, chunk_size=None, n_splits=None,
                                          n_jobs=None), min(13, cpu_count() * 4))
        with self.subTest(input='numpy'):
            self.assertEqual(get_n_chunks(self.test_data_numpy, iterable_len=None, chunk_size=None, n_splits=None,
                                          n_jobs=None), min(100, cpu_count() * 4))

    def test_smaller_iterable_len(self):
        """
        Test iterable_len, where iterable_len < len(input)
        """
        with self.subTest(input='list'):
            self.assertEqual(get_n_chunks(self.test_data, iterable_len=5, chunk_size=None, n_splits=None, n_jobs=None),
                             min(5, cpu_count() * 4))
        with self.subTest(input='numpy'):
            self.assertEqual(get_n_chunks(self.test_data_numpy, iterable_len=5, chunk_size=None, n_splits=None,
                                          n_jobs=None), min(5, cpu_count() * 4))
        with self.subTest(input='generator/iterator'):
            self.assertEqual(get_n_chunks(iter(self.test_data), iterable_len=5, chunk_size=None, n_splits=None,
                                          n_jobs=None), min(5, cpu_count() * 4))

    def test_larger_iterable_len(self):
        """
        Test iterable_len, where iterable_len > len(input). Should ignores iterable_len when actual number of tasks is
        less, except when we use the data_generator function, in which case we cannot determine the actual number of
        elements.
        """
        with self.subTest(input='list'):
            self.assertEqual(get_n_chunks(self.test_data, iterable_len=25, chunk_size=None, n_splits=None, n_jobs=None),
                             min(13, cpu_count() * 4))
        with self.subTest(input='numpy'):
            self.assertEqual(get_n_chunks(self.test_data_numpy, iterable_len=125, chunk_size=None, n_splits=None,
                                          n_jobs=None), min(100, cpu_count() * 4))
        with self.subTest(input='generator/iterator'):
            self.assertEqual(get_n_chunks(iter(self.test_data), iterable_len=25, chunk_size=None, n_splits=None,
                                          n_jobs=None), min(25, cpu_count() * 4))

    def test_chunk_size(self):
        """
        Test chunk_size
        """
        for chunk_size, expected_n_chunks in [(1, 13), (3, 5)]:
            with self.subTest(input='list', chunk_size=chunk_size, expected_n_chunks=expected_n_chunks):
                self.assertEqual(get_n_chunks(self.test_data, iterable_len=None, chunk_size=chunk_size, n_splits=None,
                                              n_jobs=None), expected_n_chunks)

        for chunk_size, expected_n_chunks in [(1, 100), (3, 34)]:
            with self.subTest(input='list', chunk_size=chunk_size, expected_n_chunks=expected_n_chunks):
                self.assertEqual(get_n_chunks(self.test_data_numpy, iterable_len=None, chunk_size=chunk_size,
                                              n_splits=None, n_jobs=None), expected_n_chunks)

    def test_n_splits(self):
        """
        Test n_splits. n_jobs shouldn't have any influence
        """
        for n_splits, n_jobs in product([1, 6], [None, 2, 8]):
            with self.subTest(input='list', n_splits=n_splits, n_jobs=n_jobs):
                self.assertEqual(get_n_chunks(self.test_data, iterable_len=None, chunk_size=None, n_splits=n_splits,
                                              n_jobs=n_jobs), n_splits)

            with self.subTest(input='numpy', n_splits=n_splits, n_jobs=n_jobs):
                self.assertEqual(get_n_chunks(self.test_data_numpy, iterable_len=None, chunk_size=None,
                                              n_splits=n_splits, n_jobs=n_jobs), n_splits)

    def test_n_jobs(self):
        """
        When everything is None except n_jobs we should use n_jobs * 4 as number of splits. Again, taking into account
        the number of tasks
        """
        for n_jobs in [1, 6]:
            with self.subTest(input='list', n_jobs=n_jobs):
                self.assertEqual(get_n_chunks(self.test_data, iterable_len=None, chunk_size=None, n_splits=None,
                                              n_jobs=n_jobs), min(4 * n_jobs, len(self.test_data)))

            with self.subTest(input='numpy', n_jobs=n_jobs):
                self.assertEqual(get_n_chunks(self.test_data_numpy, iterable_len=None, chunk_size=None, n_splits=None,
                                              n_jobs=n_jobs), min(4 * n_jobs, len(self.test_data_numpy)))

    def test_chunk_size_priority_over_n_splits(self):
        """
        chunk_size should have priority over n_splits
        """
        with self.subTest(input='list', chunk_size=1, n_splits=6):
            self.assertEqual(get_n_chunks(self.test_data, iterable_len=None, chunk_size=1, n_splits=6, n_jobs=None), 13)
        with self.subTest(input='numpy', chunk_size=1, n_splits=6):
            self.assertEqual(get_n_chunks(self.test_data_numpy, iterable_len=None, chunk_size=1, n_splits=6,
                                          n_jobs=None), 100)

        with self.subTest(input='list', chunk_size=3, n_splits=3):
            self.assertEqual(get_n_chunks(self.test_data, iterable_len=None, chunk_size=3, n_splits=3, n_jobs=None), 5)
        with self.subTest(input='numpy', chunk_size=3, n_splits=3):
            self.assertEqual(get_n_chunks(self.test_data_numpy, iterable_len=None, chunk_size=3, n_splits=3,
                                          n_jobs=None), 34)

    def test_generator_input_with_no_iterable_len_raises(self):
        """
        When working with generators the iterable_len should be provided (the working examples are already tested above)
        """
        for chunk_size, n_splits, n_jobs in product([None, 1, 3], [None, 1, 3], [None, 1, 3]):
            with self.subTest(chunk_size=chunk_size, n_splits=n_splits, n_jobs=n_jobs), self.assertRaises(ValueError):
                get_n_chunks(iter(self.test_data), iterable_len=None, chunk_size=chunk_size, n_splits=n_splits,
                             n_jobs=n_jobs)


class MakeSingleArgumentsTest(unittest.TestCase):

    def test_make_single_arguments(self):
        """
        Tests the make_single_arguments function for different inputs
        """
        # Test for some different inputs
        for (args_in, args_out), generator in product(
                [(['a', 'c', 'b', 'd'], [('a',), ('c',), ('b',), ('d',)]),
                 ([1, 2, 3, 4, 5], [(1,), (2,), (3,), (4,), (5,)]),
                 ([(True,), (False,), (None,)], [((True,),), ((False,),), ((None,),)])],
                [False, True]
        ):
            # Transform
            args_transformed = make_single_arguments((arg for arg in args_in) if generator else args_in,
                                                     generator=generator)

            # Check type
            self.assertTrue(isinstance(args_transformed, types.GeneratorType if generator else list))

            # Check contents
            self.assertEqual(list(args_transformed), args_out)


class FormatSecondsTest(unittest.TestCase):

    def test_none_input(self):
        """
        When the input is None it should return an empty string
        """
        for with_milliseconds in [False, True]:
            with self.subTest(with_milliseconds=with_milliseconds):
                self.assertEqual(format_seconds(None, with_milliseconds=with_milliseconds), '')

    def test_without_milliseconds(self):
        """
        Test output without milliseconds
        """
        for seconds, expected_output in [(0, '0:00:00'), (1, '0:00:01'), (1.337, '0:00:01'), (2.9, '0:00:02'),
                                         (123456.78901234, '1 day, 10:17:36')]:
            with self.subTest(seconds=seconds):
                self.assertEqual(format_seconds(seconds, with_milliseconds=False), expected_output)

    def test_with_milliseconds(self):
        """
        Test output with milliseconds. Only shows them when they're actually needed.
        """
        for seconds, expected_output in [(0, '0:00:00'), (1, '0:00:01'), (1.337, '0:00:01.337'), (2.9, '0:00:02.900'),
                                         (123456.78901234, '1 day, 10:17:36.789')]:
            with self.subTest(seconds=seconds):
                self.assertEqual(format_seconds(seconds, with_milliseconds=True), expected_output)


class TimeItTest(unittest.TestCase):

    def test_array_storage(self):
        """
        TimeIt should write to the correct idx in the cum_time_array container. The max_time_array is a min-heap
        container, so the lowest value is stored at index 0. The single highest value in this case is stored at index 2
        """
        for array_idx in range(5):
            cum_time_array = [0.0, 0.0, 0.0, 0.0, 0.0]
            max_time_array = [(0.0, ''), (0.0, ''), (0.0, ''), (0.0, ''), (0.0, '')]
            with self.subTest(array_idx=array_idx), patch('mpire.utils.time.time', side_effect=[0.0, 4.2]), \
                    TimeIt(cum_time_array, array_idx, max_time_array):
                pass
            self.assertListEqual([t for idx, t in enumerate(cum_time_array) if idx != array_idx], [0.0, 0.0, 0.0, 0.0])
            self.assertListEqual([t for idx, t in enumerate(max_time_array) if idx != 2.0],
                                 [(0.0, ''), (0.0, ''), (0.0, ''), (0.0, '')])
            self.assertEqual(cum_time_array[array_idx], 4.2)
            self.assertGreaterEqual(max_time_array[2], (4.2, None))

    def test_cum_time(self):
        """
        Using TimeIt multiple times should increase the cum_time_array
        """
        # These return values are used by TimeIt in order: start, end, start, end, ... So the first time the duration
        # will be 1 second, then 2 seconds, and 3 seconds.
        cum_time_array = [0]
        with patch('mpire.utils.time.time', side_effect=[0.0, 1.0, 0.0, 2.0, 0.0, 3.0]):
            with TimeIt(cum_time_array, 0):
                pass
            self.assertEqual(cum_time_array[0], 1.0)

            with TimeIt(cum_time_array, 0):
                pass
            self.assertEqual(cum_time_array[0], 3.0)

            with TimeIt(cum_time_array, 0):
                pass
            self.assertEqual(cum_time_array[0], 6.0)

    def test_max_time(self):
        """
        Using TimeIt multiple times should store the max duration value in the max_time_array using heapq. There's only
        room for the highest 5 values, while it is called 6 times. The smallest duration shouldn't be present.
        """
        # These return values are used by TimeIt in order: start, end, start, end, ... So the first time the duration
        # will be 1 second, then 2 seconds, 3 seconds, 3 seconds again, 0.5 seconds, and 10 seconds.
        cum_time_array = [0.0]
        max_time_array = [(0.0, ''), (0.0, ''), (0.0, ''), (0.0, ''), (0.0, '')]
        with patch('mpire.utils.time.time', side_effect=[0.0, 1.0, 0.0, 2.0, 0.0, 3.0, 0.0, 3.0, 0.0, 0.5, 0.0, 10.0]):
            for _ in range(6):
                with TimeIt(cum_time_array, 0, max_time_array):
                    pass
            self.assertListEqual(max_time_array, [(1.0, None), (2.0, None), (10.0, None), (3.0, None), (3.0, None)])

    def test_format_args(self):
        """
        The format args func should be called when provided
        """
        for format_func, formatted in [(lambda: "1", "1"), (lambda: 2, 2), (lambda: "foo", "foo")]:
            # These return values are used by TimeIt in order: start, end, start, end, ... So the first time the
            # duration will be 1 second, then 2 seconds, and 3 seconds.
            with self.subTest(format_func=format_func), \
                    patch('mpire.utils.time.time', side_effect=[0.0, 1.0, 0.0, 2.0, 0.0, 3.0]):
                cum_time_array = [0.0]
                max_time_array = [(0.0, ''), (0.0, '')]
                for _ in range(3):
                    with TimeIt(cum_time_array, 0, max_time_array, format_func):
                        pass

                # The heapq only had room for two entries. The highest durations should be kept
                self.assertListEqual(max_time_array, [(2.0, formatted), (3.0, formatted)])