File: matrices.rst

package info (click to toggle)
mpmath 1.4.0~a6-1
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 4,556 kB
  • sloc: python: 47,434; makefile: 22
file content (563 lines) | stat: -rw-r--r-- 14,588 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
Matrices
========

Creating matrices
-----------------

Basic methods
.............

Matrices in mpmath are implemented using dictionaries. Only non-zero values are
stored, so it is cheap to represent sparse matrices.

The most basic way to create one is to use the ``matrix`` class directly. You
can create an empty matrix specifying the dimensions::

    >>> from mpmath import (matrix, ones, zeros, randmatrix, nprint, chop, iv,
    ...                     lu_solve, residual, fp, lu, diag, eye, eps, qr)
    >>> matrix(2)
    matrix(
    [['0.0', '0.0'],
     ['0.0', '0.0']])
    >>> matrix(2, 3)
    matrix(
    [['0.0', '0.0', '0.0'],
     ['0.0', '0.0', '0.0']])

Calling ``matrix`` with one dimension will create a square matrix.

To access the dimensions of a matrix, use the ``rows`` or ``cols`` keyword::

    >>> A = matrix(3, 2)
    >>> A
    matrix(
    [['0.0', '0.0'],
     ['0.0', '0.0'],
     ['0.0', '0.0']])
    >>> A.rows
    3
    >>> A.cols
    2

You can also change the dimension of an existing matrix. This will set the
new elements to 0. If the new dimension is smaller than before, the
concerning elements are discarded::

    >>> A.rows = 2
    >>> A
    matrix(
    [['0.0', '0.0'],
     ['0.0', '0.0']])

Internally ``convert`` is applied every time an element is set. This is
done using the syntax A[row,column], counting from 0::

    >>> A = matrix(2)
    >>> A[1,1] = 1 + 1j
    >>> print(A)
    [0.0           0.0]
    [0.0  (1.0 + 1.0j)]

A more comfortable way to create a matrix lets you use nested lists::

    >>> matrix([[1, 2], [3, 4]])
    matrix(
    [['1.0', '2.0'],
     ['3.0', '4.0']])

Advanced methods
................

Convenient functions are available for creating various standard matrices::

    >>> zeros(2)
    matrix(
    [['0.0', '0.0'],
     ['0.0', '0.0']])
    >>> ones(2)
    matrix(
    [['1.0', '1.0'],
     ['1.0', '1.0']])
    >>> diag([1, 2, 3]) # diagonal matrix
    matrix(
    [['1.0', '0.0', '0.0'],
     ['0.0', '2.0', '0.0'],
     ['0.0', '0.0', '3.0']])
    >>> eye(2) # identity matrix
    matrix(
    [['1.0', '0.0'],
     ['0.0', '1.0']])

You can even create random matrices::

    >>> randmatrix(2) # doctest:+SKIP
    matrix(
    [['0.53491598236191806', '0.57195669543302752'],
     ['0.85589992269513615', '0.82444367501382143']])

Vectors
.......

Vectors may also be represented by the ``matrix`` class (with rows = 1 or cols = 1).
For vectors there are some things which make life easier. A column vector can
be created using a flat list, a row vectors using an almost flat nested list::

    >>> matrix([1, 2, 3])
    matrix(
    [['1.0'],
     ['2.0'],
     ['3.0']])
    >>> matrix([[1, 2, 3]])
    matrix(
    [['1.0', '2.0', '3.0']])

Optionally vectors can be accessed like lists, using only a single index::

    >>> x = matrix([1, 2, 3])
    >>> x[1]
    mpf('2.0')
    >>> x[1,0]
    mpf('2.0')

Other
.....

Like you probably expected, matrices can be printed::

    >>> print(randmatrix(3)) # doctest:+SKIP
    [ 0.782963853573023  0.802057689719883  0.427895717335467]
    [0.0541876859348597  0.708243266653103  0.615134039977379]
    [ 0.856151514955773  0.544759264818486  0.686210904770947]

Use ``nstr`` or ``nprint`` to specify the number of digits to print::

    >>> nprint(randmatrix(5), 3) # doctest:+SKIP
    [2.07e-1  1.66e-1  5.06e-1  1.89e-1  8.29e-1]
    [6.62e-1  6.55e-1  4.47e-1  4.82e-1  2.06e-2]
    [4.33e-1  7.75e-1  6.93e-2  2.86e-1  5.71e-1]
    [1.01e-1  2.53e-1  6.13e-1  3.32e-1  2.59e-1]
    [1.56e-1  7.27e-2  6.05e-1  6.67e-2  2.79e-1]

As matrices are mutable, you will need to copy them sometimes::

    >>> A = matrix(2)
    >>> A
    matrix(
    [['0.0', '0.0'],
     ['0.0', '0.0']])
    >>> B = A.copy()
    >>> B[0,0] = 1
    >>> B
    matrix(
    [['1.0', '0.0'],
     ['0.0', '0.0']])
    >>> A
    matrix(
    [['0.0', '0.0'],
     ['0.0', '0.0']])

Finally, it is possible to convert a matrix to a nested list. This is very useful,
as most Python libraries involving matrices or arrays (namely NumPy or SymPy)
support this format::

    >>> B.tolist()
    [[mpf('1.0'), mpf('0.0')], [mpf('0.0'), mpf('0.0')]]


Matrix operations
-----------------

You can add and subtract matrices of compatible dimensions::

    >>> A = matrix([[1, 2], [3, 4]])
    >>> B = matrix([[-2, 4], [5, 9]])
    >>> A + B
    matrix(
    [['-1.0', '6.0'],
     ['8.0', '13.0']])
    >>> A - B
    matrix(
    [['3.0', '-2.0'],
     ['-2.0', '-5.0']])
    >>> A + ones(3)
    Traceback (most recent call last):
      File "<stdin>", line 1, in <module>
      File "...", line 238, in __add__
        raise ValueError('incompatible dimensions for addition')
    ValueError: incompatible dimensions for addition

It is possible to multiply or add matrices and scalars. In the latter case the
operation will be done element-wise::

    >>> A * 2
    matrix(
    [['2.0', '4.0'],
     ['6.0', '8.0']])
    >>> A / 4
    matrix(
    [['0.25', '0.5'],
     ['0.75', '1.0']])
    >>> A - 1
    matrix(
    [['0.0', '1.0'],
     ['2.0', '3.0']])

Of course you can perform matrix multiplication, if the dimensions are
compatible::

    >>> A * B
    matrix(
    [['8.0', '22.0'],
     ['14.0', '48.0']])
    >>> matrix([[1, 2, 3]]) * matrix([[-6], [7], [-2]])
    matrix(
    [['2.0']])

You can raise powers of square matrices::

    >>> A**2
    matrix(
    [['7.0', '10.0'],
     ['15.0', '22.0']])

Negative powers will calculate the inverse::

    >>> A**-1
    matrix(
    [['-2.0', '1.0'],
     ['1.5', '-0.5']])
    >>> nprint(A * A**-1, 3)
    [      1.0  1.08e-19]
    [-2.17e-19       1.0]

Matrix transposition is straightforward::

    >>> A = ones(2, 3)
    >>> A
    matrix(
    [['1.0', '1.0', '1.0'],
     ['1.0', '1.0', '1.0']])
    >>> A.T
    matrix(
    [['1.0', '1.0'],
     ['1.0', '1.0'],
     ['1.0', '1.0']])


Norms
.....

Sometimes you need to know how "large" a matrix or vector is. Due to their
multidimensional nature it's not possible to compare them, but there are
several functions to map a matrix or a vector to a positive real number, the
so called norms.

.. autofunction :: mpmath.norm

.. autofunction :: mpmath.mnorm


Linear algebra
--------------

Determinant and Rank
....................

.. autofunction :: mpmath.det

.. autofunction :: mpmath.rank


Decompositions
..............

.. autofunction :: mpmath.cholesky


Linear equations
................

Basic linear algebra is implemented; you can for example solve the linear
equation system::

      x + 2*y = -10
    3*x + 4*y =  10

using ``lu_solve``::

    >>> A = matrix([[1, 2], [3, 4]])
    >>> b = matrix([-10, 10])
    >>> x = lu_solve(A, b)
    >>> x
    matrix(
    [['30.0'],
     ['-20.0']])

If you don't trust the result, use ``residual`` to calculate
the residual `||A x-b||`::

    >>> residual(A, x, b)
    matrix(
    [['3.46944695195361e-18'],
     ['3.46944695195361e-18']])
    >>> str(eps)
    '2.22044604925031e-16'

As you can see, the solution is quite accurate. The error is caused by the
inaccuracy of the internal floating-point arithmetic. Though, it's even smaller
than the current machine epsilon, which basically means you can trust the
result.

If you need more speed, use NumPy, or use ``fp`` instead ``mp`` matrices
and methods::

    >>> A = fp.matrix([[1, 2], [3, 4]])
    >>> b = fp.matrix([-10, 10])
    >>> fp.lu_solve(A, b)
    matrix(
    [['29.999999999999996'],
     ['-19.999999999999996']])

``lu_solve`` accepts overdetermined systems. It is usually not possible to solve
such systems, so the residual is minimized instead. Internally this is done
using Cholesky decomposition to compute a least squares approximation. This means
that that ``lu_solve`` will square the errors. If you can't afford this, use
``qr_solve`` instead. It is twice as slow but more accurate, and it calculates
the residual automatically.

.. autofunction:: mpmath.lu_solve

Matrix factorization
....................

The function ``lu`` computes an explicit LU factorization of a matrix::

    >>> P, L, U = lu(matrix([[0,2,3],[4,5,6],[7,8,9]]))
    >>> print(P)
    [0.0  0.0  1.0]
    [1.0  0.0  0.0]
    [0.0  1.0  0.0]
    >>> print(L)
    [              1.0                0.0  0.0]
    [              0.0                1.0  0.0]
    [0.571428571428571  0.214285714285714  1.0]
    >>> print(U)
    [7.0  8.0                9.0]
    [0.0  2.0                3.0]
    [0.0  0.0  0.214285714285714]
    >>> print(P.T*L*U)
    [0.0  2.0  3.0]
    [4.0  5.0  6.0]
    [7.0  8.0  9.0]

The function ``qr`` computes a QR factorization of a matrix::

    >>> A = matrix([[1, 2], [3, 4], [1, 1]])
    >>> Q, R = qr(A)
    >>> print(Q)
    [-0.301511344577764   0.861640436855329   0.408248290463863]
    [-0.904534033733291  -0.123091490979333  -0.408248290463863]
    [-0.301511344577764  -0.492365963917331   0.816496580927726]
    >>> print(R)
    [-3.3166247903554  -4.52267016866645]
    [             0.0  0.738548945875996]
    [             0.0                0.0]
    >>> print(Q * R)
    [1.0  2.0]
    [3.0  4.0]
    [1.0  1.0]
    >>> print(chop(Q.T * Q))
    [1.0  0.0  0.0]
    [0.0  1.0  0.0]
    [0.0  0.0  1.0]


The singular value decomposition
................................

The routines ``svd_r`` and ``svd_c`` compute the singular value decomposition
of a real or complex matrix A. ``svd`` is an unified interface calling
either ``svd_r`` or ``svd_c`` depending on whether *A* is real or complex.

Given *A*, two orthogonal (*A* real) or unitary (*A* complex) matrices *U* and *V*
are calculated such that

.. math ::

       A = U S V, \quad U' U = 1, \quad V V' = 1

where *S* is a suitable shaped matrix whose off-diagonal elements are zero.
Here ' denotes the hermitian transpose (i.e. transposition and complex
conjugation). The diagonal elements of *S* are the singular values of *A*,
i.e. the square roots of the eigenvalues of `A' A` or `A A'`.

Examples::

   >>> from mpmath import mp
   >>> A = mp.matrix([[2, -2, -1], [3, 4, -2], [-2, -2, 0]])
   >>> S = mp.svd_r(A, compute_uv = False)
   >>> print(S)
   [6.0]
   [3.0]
   [1.0]
   >>> U, S, V = mp.svd_r(A)
   >>> print(mp.chop(A - U * mp.diag(S) * V))
   [0.0  0.0  0.0]
   [0.0  0.0  0.0]
   [0.0  0.0  0.0]


The Schur decomposition
.......................

This routine computes the Schur decomposition of a square matrix *A*.
Given *A*, a unitary matrix *Q* is determined such that

.. math ::

      Q' A Q = R, \quad Q' Q = Q Q' = 1

where *R* is an upper right triangular matrix. Here ' denotes the
hermitian transpose (i.e. transposition and conjugation).

Examples::

    >>> from mpmath import mp
    >>> A = mp.matrix([[3, -1, 2], [2, 5, -5], [-2, -3, 7]])
    >>> Q, R = mp.schur(A)
    >>> mp.nprint(R, 3)
    [2.0  0.417  -2.53]
    [0.0    4.0  -4.74]
    [0.0    0.0    9.0]
    >>> print(mp.chop(A - Q * R * Q.transpose_conj()))
    [0.0  0.0  0.0]
    [0.0  0.0  0.0]
    [0.0  0.0  0.0]


The eigenvalue problem
......................

The routine ``eig`` solves the (ordinary) eigenvalue problem for a real or complex
square matrix *A*. Given *A*, a vector *E* and matrices *ER* and *EL* are calculated such that

.. code ::

              A ER[:,i] =         E[i] ER[:,i]
      EL[i,:] A         = EL[i,:] E[i]

*E* contains the eigenvalues of *A*. The columns of *ER* contain the right eigenvectors
of *A* whereas the rows of *EL* contain the left eigenvectors.


Examples::

    >>> from mpmath import mp
    >>> A = mp.matrix([[3, -1, 2], [2, 5, -5], [-2, -3, 7]])
    >>> E, ER = mp.eig(A)
    >>> print(mp.chop(A * ER[:,0] - E[0] * ER[:,0]))
    [0.0]
    [0.0]
    [0.0]
    >>> E, EL, ER = mp.eig(A,left = True, right = True)
    >>> E, EL, ER = mp.eig_sort(E, EL, ER)
    >>> mp.nprint(E)
    [2.0, 4.0, 9.0]
    >>> print(mp.chop(A * ER[:,0] - E[0] * ER[:,0]))
    [0.0]
    [0.0]
    [0.0]
    >>> print(mp.chop( EL[0,:] * A - EL[0,:] * E[0]))
    [0.0  0.0  0.0]


The symmetric eigenvalue problem
................................

The routines ``eigsy`` and ``eighe`` solve the (ordinary) eigenvalue problem
for a real symmetric or complex hermitian square matrix *A*.
``eigh`` is an unified interface for this two functions calling either
``eigsy`` or ``eighe`` depending on whether *A* is real or complex.

Given *A*, an orthogonal (*A* real) or unitary matrix *Q* (*A* complex) is
calculated which diagonalizes A:

.. math ::

        Q' A Q = \operatorname{diag}(E), \quad Q Q' = Q' Q = 1

Here diag(*E*) a is diagonal matrix whose diagonal is *E*.
' denotes the hermitian transpose (i.e. ordinary transposition and
complex conjugation).

The columns of *Q* are the eigenvectors of *A* and *E* contains the eigenvalues:

.. code ::

        A Q[:,i] = E[i] Q[:,i]

Examples::

    >>> from mpmath import mp
    >>> A = mp.matrix([[3, 2], [2, 0]])
    >>> E = mp.eigsy(A, eigvals_only = True)
    >>> print(E)
    [-1.0]
    [ 4.0]
    >>> A = mp.matrix([[1, 2], [2, 3]])
    >>> E, Q = mp.eigsy(A)                     # alternative: E, Q = mp.eigh(A)
    >>> print(mp.chop(A * Q[:,0] - E[0] * Q[:,0]))
    [0.0]
    [0.0]
    >>> A = mp.matrix([[1, 2 + 5j], [2 - 5j, 3]])
    >>> E, Q = mp.eighe(A)                     # alternative: E, Q = mp.eigh(A)
    >>> print(mp.chop(A * Q[:,0] - E[0] * Q[:,0]))
    [0.0]
    [0.0]


Determinant
...........

The determinant of a square matrix is computed by the
function ``det``::

    >>> from mpmath import mp
    >>> A = mp.matrix([[7, 2], [1.5, 3]])
    >>> print(mp.det(A))
    18.0


Interval and double-precision matrices
--------------------------------------

The ``iv.matrix`` and ``fp.matrix`` classes convert inputs
to intervals and Python floating-point numbers respectively.

Interval matrices can be used to perform linear algebra operations
with rigorous error tracking::

    >>> a = iv.matrix([['0.1','0.3','1.0'],
    ...                ['7.1','5.5','4.8'],
    ...                ['3.2','4.4','5.6']])
    >>>
    >>> b = iv.matrix(['4','0.6','0.5'])
    >>> c = iv.lu_solve(a, b)
    >>> print(c)
    [  [5.2582327113062393041, 5.2582327113062749951]]
    [[-13.155049396267856583, -13.155049396267821167]]
    [  [7.4206915477497212555, 7.4206915477497310922]]
    >>> print(a*c)
    [  [3.9999999999999866773, 4.0000000000000133227]]
    [[0.59999999999972430942, 0.60000000000027142733]]
    [[0.49999999999982236432, 0.50000000000018474111]]

Matrix functions
----------------

.. autofunction :: mpmath.expm
.. autofunction :: mpmath.cosm
.. autofunction :: mpmath.sinm
.. autofunction :: mpmath.sqrtm
.. autofunction :: mpmath.logm
.. autofunction :: mpmath.powm