1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
|
/*
* Example code for libmps
*
* This code computes the zeros of the secular equation
*
* S(x) = 1 / (x - 2) + 3 / (x - 4) + 5 / (x - 6) - 1
*
* using its representation as floating point, high precision
* floating point, and rational coefficients.
*
* Can be compiled with:
* gcc -o secular -lm -lgmp -lmps secular.c
*
* Author: Leonardo Robol <leonardo.robol@unipi.it>
*/
#include <mps/mps.h>
#include <stdlib.h>
#include <stdio.h>
#include <gmp.h>
#include <string.h>
int
main (int argc, char **argv)
{
mps_context * ctx = NULL;
int i;
long wp = 128;
cplx_t *af = NULL, *bf = NULL;
mpc_t *am = NULL, *bm = NULL;
mpq_t *aqr = NULL, *bqr = NULL;
mpq_t qzero;
cplx_t *roots = NULL;
mpc_t *mroots = NULL;
mps_secular_equation * p = NULL;
/* First version: floating point coefficients. */
printf("== Computing the roots using floating point coefficients \n");
af = cplx_valloc(3);
bf = cplx_valloc(3);
for (i = 0; i < 3; i++) {
cplx_set_d(af[i], 2.0 * i + 1, 0.0);
cplx_set_d(bf[i], 2.0 * i + 2.0, 0.0);
}
ctx = mps_context_new();
p = mps_secular_equation_new (ctx, af, bf, 3);
mps_context_set_input_poly (ctx, MPS_POLYNOMIAL (p));
mps_mpsolve(ctx);
mps_context_get_roots_d (ctx, &roots, NULL);
for (i = 0; i < 3; i++) {
printf("Root %d: %f + %f I\n", i, cplx_Re(roots[i]), cplx_Im(roots[i]));
}
free (roots);
mps_polynomial_free (ctx, MPS_POLYNOMIAL (p));
mps_context_free(ctx);
free(af);
free(bf);
/* Version 2: higher precision coefficients and approximations */
printf("\n\n== Computing the roots using multiprecision floating-point coefficients (asking 40 digits)\n");
am = mpc_valloc(3);
bm = mpc_valloc(3);
for (i = 0; i < 3; i++) {
mpc_init2(am[i], wp);
mpc_set_ui(am[i], 2U * i + 1U, 0U);
mpc_init2(bm[i], wp);
mpc_set_ui(bm[i], 2U * i + 2U, 0U);
}
ctx = mps_context_new();
p = mps_secular_equation_new_raw (ctx, 3);
for (i = 0; i < 3; i++) {
mps_secular_equation_set_coefficient_f (ctx, p, i, am[i], bm[i]);
}
mps_context_set_input_poly (ctx, MPS_POLYNOMIAL (p));
mps_context_set_output_goal (ctx, MPS_OUTPUT_GOAL_APPROXIMATE);
mps_context_set_output_prec (ctx, 40);
mps_mpsolve(ctx);
mps_context_get_roots_m (ctx, &mroots, NULL);
for (i = 0; i < 3; i++) {
printf("Root %d: ", i);
mpc_out_str(stdout, 10, wp, mroots[i]);
printf("\n");
mpc_clear(mroots[i]);
mpc_clear(am[i]);
mpc_clear(bm[i]);
}
free (mroots); mroots = NULL;
mps_polynomial_free (ctx, MPS_POLYNOMIAL (p));
mps_context_free(ctx);
free(am);
free(bm);
/* Version 3: higher precision coefficients and approximations */
printf("\n\n== Computing the roots using rational coefficients (asking 240 digits)\n");
aqr = mpq_valloc(3);
bqr = mpq_valloc(3);
mpq_init(qzero);
mpq_set_ui (qzero, 0U, 1U);
for (i = 0; i < 3; i++) {
mpq_init(aqr[i]);
mpq_set_ui(aqr[i], 2U * i + 1U, 1U);
mpq_init(bqr[i]);
mpq_set_ui(bqr[i], 2U * i + 2U, 1U);
}
ctx = mps_context_new();
p = mps_secular_equation_new_raw (ctx, 3);
for (i = 0; i < 3; i++) {
mps_secular_equation_set_coefficient_q (ctx, p, i, aqr[i], qzero, bqr[i], qzero);
}
mpq_clear(qzero);
mps_context_set_input_poly (ctx, MPS_POLYNOMIAL (p));
mps_context_set_output_goal (ctx, MPS_OUTPUT_GOAL_APPROXIMATE);
mps_context_set_output_prec (ctx, 240);
mps_mpsolve(ctx);
mps_context_get_roots_m (ctx, &mroots, NULL);
for (i = 0; i < 3; i++) {
printf("Root %d: ", i);
mpc_out_str(stdout, 10, wp, mroots[i]);
printf("\n");
mpc_clear(mroots[i]);
mpq_clear(aqr[i]);
mpq_clear(bqr[i]);
}
free (mroots);
mps_polynomial_free (ctx, MPS_POLYNOMIAL (p));
mps_context_free(ctx);
free(aqr);
free(bqr);
return EXIT_SUCCESS;
}
|