File: roots_of_unity.c

package info (click to toggle)
mpsolve 3.2.3-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 13,100 kB
  • sloc: ansic: 25,748; sh: 4,925; cpp: 3,155; makefile: 914; python: 407; yacc: 158; lex: 85; xml: 41
file content (200 lines) | stat: -rw-r--r-- 5,891 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
/**
 * Simple GTK program to demonstrate possible strategies
 * for MPSolve integration inside a graphical application.
 *
 * It uses MPSolve to solve the polynomial x^n - 1 with the n
 * specfied by the user and then displays the roots on a plot.
 *
 * Author: Leonardo Robol <robol@mail.dm.unipi.it>
 *
 * Copyright (C) 2001-2013, Dipartimento di Matematica "L. Tonelli", Pisa.
 * License: http://www.gnu.org/licenses/gpl.html GPL version 3 or higher
 */

#include <mps/mps.h>
#include <gtk/gtk.h>
#include <cairo/cairo.h>

#if GTK_MAJOR_VERSION < 3

#ifndef gtk_widget_get_allocated_width
#define gtk_widget_get_allocated_width(widget) (widget->allocation.width)
#endif

#ifndef gtk_widget_get_allocated_height
#define gtk_widget_get_allocated_height(widget) (widget->allocation.height)
#endif

#endif

cplx_t * points = NULL;

int degree = 0;

GtkWidget * drawing_area = NULL;

void on_drawing_area_draw (GtkWidget* , cairo_t*);

#if GTK_MAJOR_VERSION < 3
void
on_expose_event (GtkWidget * widget, GdkEvent * event)
{
  cairo_t * cr = gdk_cairo_create (widget->window);
  on_drawing_area_draw (widget, cr);
}
#endif

void
on_drawing_area_draw (GtkWidget * widget,
                      cairo_t * cr)
{
  int width, height;

  width = gtk_widget_get_allocated_width (widget);
  height = gtk_widget_get_allocated_height (widget);

  /* Draw background */
  cairo_rectangle (cr, 0, 0, width, height);
  cairo_set_source_rgb (cr, 1, 1, 1);
  cairo_fill (cr);

  /* Draw x and y axes */
  cairo_set_line_width (cr, 1);
  cairo_set_source_rgb (cr, 0, 0, 0);

  cairo_move_to (cr, 6, 0.5 * height);
  cairo_line_to (cr, width - 6, 0.5 * height);

  cairo_move_to (cr, 0.5 * width, height - 6);
  cairo_line_to (cr, 0.5 * width, 6);

  cairo_stroke (cr);

  /* Draw points if present */
  if (points)
    {
      int i;
      double x, y;
      cairo_set_source_rgb (cr, 0.9, 0.1, 0.1);
#define PADDING (24)

      /* Check if we can draw in here. */
      if (width < 2 * PADDING || height < 2 * PADDING)
        return;

      for (i = 0; i < degree; i++)
        {
          x = cplx_Re (points[i]) * (0.5 * width - PADDING) + width / 2;
          y = -cplx_Im (points[i]) * (0.5 * height - PADDING) + height / 2;
          cairo_arc (cr, x, y, 1.3, 0, 6.29);
          cairo_fill (cr);
        }
#undef PADDING
    }
}

gboolean 
update_drawing_area (void * user_data)
{
  gtk_widget_queue_draw (drawing_area);
  return false;
}

void
on_polynomial_solved (mps_context * s, GtkButton * button)
{
  points = NULL;
  mps_context_get_roots_d (s, &points, NULL);
  degree = mps_context_get_degree (s);

  /* Call the update function from the right thread! */
  g_idle_add (update_drawing_area, NULL);

  gtk_widget_set_sensitive (GTK_WIDGET (button), true);
  mps_polynomial_free (s, mps_context_get_active_poly (s));
  mps_context_free (s);
}

void
on_solve_button_clicked (GtkButton * button, GtkSpinButton * spin_button)
{
  int degree = gtk_spin_button_get_value_as_int (spin_button);
  mps_context * s = mps_context_new ();
  mps_monomial_poly * p = mps_monomial_poly_new (s, degree);

  /* Please note that here a mutex will be required to avoid
   * freeing data while it's used to render the view. But it
   * is not added in this example to avoid complications. */
  if (points)
    {
      cplx_vfree (points);
      points = NULL;
    }

  gtk_widget_set_sensitive (GTK_WIDGET (button), false);

  /* Setting the coefficients of the input polynomial */
  mps_monomial_poly_set_coefficient_d (s, p, 0, -1, 0);
  mps_monomial_poly_set_coefficient_d (s, p, degree, 1, 0);

  /* Asking MPSolve to solve it asynchronously */
  mps_context_set_input_poly (s, MPS_POLYNOMIAL (p));
  mps_mpsolve_async (s, (mps_callback) on_polynomial_solved, button);
}

int
main (int argc, char *argv[])
{
  /* Init the GTK environment */
  gtk_init (&argc, &argv);

  /* The window we are using for this simple example, where all the widgets will
   * be packed. */
  GtkWidget * window = gtk_window_new (GTK_WINDOW_TOPLEVEL);

  /* We will use this drawing area to draw the computed roots. */
  drawing_area = gtk_drawing_area_new ();

  /* This spin button will be used to change the degree of the computed polynomials. */
  GtkWidget * spin_button = gtk_spin_button_new_with_range (1.0, 10000.0, 1.0);
  GtkWidget * degree_label = gtk_label_new ("Degree:");
  GtkWidget * solve_button = gtk_button_new_with_label ("Solve");

#if GTK_MAJOR_VERSION < 3
  GtkWidget * degree_box = gtk_hbox_new (FALSE, 0);
#else
  GtkWidget * degree_box = gtk_box_new (GTK_ORIENTATION_HORIZONTAL, 0);
#endif

  gtk_box_pack_start (GTK_BOX (degree_box), GTK_WIDGET (degree_label), false, true, 6);
  gtk_box_pack_start (GTK_BOX (degree_box), GTK_WIDGET (spin_button), true, true, 6);
  gtk_box_pack_start (GTK_BOX (degree_box), solve_button, false, true, 6);

#if GTK_MAJOR_VERSION < 3
  GtkWidget * main_box = gtk_vbox_new (FALSE, 6);
#else
  GtkWidget * main_box = gtk_box_new (GTK_ORIENTATION_VERTICAL, 6);
#endif
  gtk_box_pack_start (GTK_BOX (main_box), GTK_WIDGET (degree_box), false, true, 6);
  gtk_box_pack_start (GTK_BOX (main_box), GTK_WIDGET (drawing_area), true, true, 0);

  gtk_container_add (GTK_CONTAINER (window), GTK_WIDGET (main_box));
  gtk_widget_show_all (GTK_WIDGET (window));

  gtk_window_set_title (GTK_WINDOW (window), "MPSolve's roots-of-unity finder");
  gtk_widget_set_size_request (window, 420, 280);

  /* Connecting standard callbacks and the one to handle polynomial solving */
  g_signal_connect (window, "destroy", gtk_main_quit, NULL);
  g_signal_connect (solve_button, "clicked", G_CALLBACK (on_solve_button_clicked), spin_button);

#if GTK_MAJOR_VERSION < 3
  g_signal_connect (drawing_area, "expose-event", G_CALLBACK (on_expose_event), NULL);
#else
  g_signal_connect (drawing_area, "draw", G_CALLBACK (on_drawing_area_draw), NULL);
#endif

  gtk_main ();

  return EXIT_SUCCESS;
}