1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
|
/*
* This file is part of MPSolve 3.2.2
*
* Copyright (C) 2001-2020, Dipartimento di Matematica "L. Tonelli", Pisa.
* License: http://www.gnu.org/licenses/gpl.html GPL version 3 or higher
*
* Authors:
* Leonardo Robol <leonardo.robol@unipi.it>
*/
/**
* @file
* @brief Multithreading iterations for MPSolve.
*/
#include <pthread.h>
#include <semaphore.h>
#include <mps/mps.h>
MPS_BEGIN_DECLS
#ifndef MPS_THREADING_H_
#define MPS_THREADING_H_
#define MPS_THREAD_JOB_EXCEP -1
#define MPS_MAX_CORES 8192
#define mps_with_lock(pmutex, code) { \
pthread_mutex_lock (&pmutex); \
code \
pthread_mutex_unlock (&pmutex); \
}
/**
* @brief A generic routine that can be performed by a <code>mps_thread</code>.
*/
typedef void * (*mps_thread_work)(void *);
/**
* @brief A new job for <code>mps_thread_fsolve()</code>,
* <code>mps_thread_dsolve()</code> or <code>mps_thread_msolve()</code>.
*
*/
struct mps_thread_job {
/**
* @brief The index if the root to iterate on.
*/
int i;
/**
* @brief The iteration that will be performed on this root.
*/
int iter;
/**
* @brief cluster_item The cluster element of <code>s->clusterization
* that we are iterating on.
*/
mps_cluster_item * cluster_item;
};
/**
* @brief Struct holding a job queue.
*
* This structure can be used to coordinate the work in the different
* thread during multithread computation in MPSolve.
*
* It must be allocated using <code>mps_thread_job_queue_new()</code>
* and freed with <code>mps_thread_job_queue_free()</code>.
* A new job can be requested with the routine
* <code>mps_thread_job_queue_next()</code>.
*
* @see mps_thread_job_queue_next()
*/
struct mps_thread_job_queue {
/**
* @brief Maximum number of iteration to perform before
* raising an exeption.
*/
unsigned int max_iter;
/**
* @brief Number of the roots of this problem (i.e. degree of
* the polynomial).
*/
unsigned int n_roots;
/**
* @brief Iterations that is being performed right now.
*/
int iter;
/**
* @brief Next root to iterate on.
*/
mps_root * root;
/**
* @brief Element of <code>s->clusterization</code> that
* we are iterating on.
*/
mps_cluster_item * cluster_item;
/**
* @brief Internal mutex of the queue used to guarantee
* exclusive access.
*/
pthread_mutex_t mutex;
};
/**
* @brief Data packed to be passed to a new thread that will
* perform floating point, dpe or multiprecision iterations.
*/
struct mps_thread_worker_data {
/**
* @brief Pointer to the integer that holds the number of zeros
* computed until now.
*/
volatile int *nzeros;
/**
* @brief The number of well approximated roots required to stop iteration
* packet.
*/
int required_zeros;
/**
* @brief Pointer to the integer that holds the number of iterations
* performed until now.
*/
volatile int *it;
/**
* @brief The pointer to the <code>mps_context</code> struct.
*/
mps_context *s;
/**
* @brief The index of this thread.
*/
int thread;
/**
* @brief The total number of threads.
*/
int n_threads;
/**
* @brief Pointer to the boolean excep value. Setting this to true
* cause the iteration to enter exception state.
*
* If this state is reached all threads returns because no more
* iteration are needed / useful.
*/
volatile mps_boolean *excep;
/**
* @brief Array of <code>n</code> mutexes where <code>n = s->n</code>, i.e.
* is the total number of roots of the polynomial.
*
* The mutex in position <code>i</code> gets locked when a
* thread needs to read and/or write from/to
* the i-th root.
*/
pthread_mutex_t *aberth_mutex;
/**
* @brief Global aberth mutex used to coordinate all aberth
* computations.
*/
pthread_mutex_t *global_aberth_mutex;
/**
* @brief Array of <code>n</code> mutexes that gets locked when a thread
* start to iterate over a root. This is done to ensure that only a thread
* at a time is iterating over a root.
*/
pthread_mutex_t *roots_mutex;
/**
* @brief Global state mute used to synchronize some (hopefully not so many)
* global operation.
*/
pthread_mutex_t *gs_mutex;
/**
* @brief Pointer to the <code>mps_thread_job_queue</code> that the thread
* may query for other work.
*/
mps_thread_job_queue *queue;
};
/**
* @brief A thread that is part of a thread pool.
*/
struct mps_thread {
/**
* @brief Pool of which this thread is part.
*/
mps_thread_pool * pool;
/**
* @brief The pthread_t assigned to the worked.
*/
pthread_t * thread;
/**
* @brief The next thread in the pool, or NULL if this
* is the last thread contained in it.
*/
mps_thread * next;
/**
* @brief The data assigned to this thread, that sets
* the worker that he has to do.
*/
mps_thread_worker_data * data;
/**
* @brief True if the thread is busy.
*/
mps_boolean busy;
/**
* @brief Busy mutex of the thread. This is locked when the thread
* is doing something, se we can emulate a join on it by
* try to lock and unlock this mutex.
*/
pthread_mutex_t busy_mutex;
/**
* @brief Condition that allow the thread to run. Before the thread
* finish the busy state (unlocking the busy mutex) or when it is
* created, it waits for the start condition to be true before
* doing anything.
*/
pthread_cond_t start_condition;
/**
* @brief A boolean value that is true if the thread must continue to
* poll, or false if it is required to exit. Since the thread
* may be waiting for work a call to pthread_cond_signal on
* start condition may be required to make it exit after setting
* this variable.
*/
mps_boolean alive;
/**
* @brief The routine that must be called when the thread starts.
*/
mps_thread_work work;
/**
* @brief The argument to be passed to the thread.
*/
void * args;
};
/**
* @brief An item that can be inserted and/or extracted from
* a mps_thread_pool_queue.
*/
struct mps_thread_pool_queue_item {
/**
* @brief The actual job that should be performed.
*/
mps_thread_work work;
/**
* @brief The args that shall be passed to the work function.
*/
void * args;
/**
* @brief The next item in the queue.
*/
mps_thread_pool_queue_item * next;
};
/**
* @brief A queue of work items that thread can consume.
*/
struct mps_thread_pool_queue {
/**
* @brief Pointer to the first item of the queue, or NULL if
* the queue is empty.
*/
mps_thread_pool_queue_item * first;
/**
* @brief Pointer to the last item of the queue, or NULL if
* the queue is empty.
*/
mps_thread_pool_queue_item * last;
};
/**
* @brief A thread pool that contains a set of <code>mps_thread</code>
* and allow to manage them as a set of worker.
*/
struct mps_thread_pool {
/**
* @brief The numer of thread in the thread pool.
*/
unsigned int n;
/**
* @brief Limit to the maximum spawnable number
* of threads. This can be set to 0 that means
* "No limit". It is useful when less concurrency
* is desired without deleting and recreating threads.
*
* This variables MUST be updated using the accessor function
* mps_thread_pool_set_
*/
unsigned int concurrency_limit;
/**
* @brief A pointer to the first thread in the thread pool.
*/
mps_thread * first;
/**
* @brief Queue of the work that shall be consumed by the threads.
*/
mps_thread_pool_queue * queue;
/**
* @brief Mutex associated to the queue_changed condition.
*/
pthread_mutex_t queue_changed_mutex;
/**
* @brief Condition that is notified when the queue changes.
*/
pthread_cond_t queue_changed;
pthread_mutex_t work_completed_mutex;
pthread_cond_t work_completed_cond;
int busy_counter;
/**
* @brief When this vaulue is set to true every call to mps_assign_job
* returns immediately.
*
* When it is set to false the calls to mps_thread_pool_assign() when the number
* of thread is set to 1 will immediately perform the work, instead
* of delegating it to a background thread. This is done to ensure reasonable
* performance for the cases where only 1 CPU is available on the PC.
*/
mps_boolean strict_async;
};
/* EXPORTED ROUTINES */
void * mps_thread_mainloop (void * thread_ptr);
void mps_thread_start_mainloop (mps_context * s, mps_thread * thread);
mps_thread * mps_thread_new (mps_context * s, mps_thread_pool * pool);
void mps_thread_free (mps_context * s, mps_thread * thread);
void mps_thread_pool_set_concurrency_limit (mps_context * s, mps_thread_pool * pool,
unsigned int concurrency_limit);
void mps_thread_pool_assign (mps_context * s, mps_thread_pool * pool, mps_thread_work work, void * args);
void mps_thread_pool_insert_new_thread (mps_context * s, mps_thread_pool * pool);
void mps_thread_pool_wait (mps_context * s, mps_thread_pool * pool);
mps_thread_pool * mps_thread_pool_get_system_pool (mps_context * s);
void mps_thread_pool_set_strict_async (mps_thread_pool * pool, mps_boolean strict_async);
mps_thread_pool * mps_thread_pool_new (mps_context * s, int n_threads);
void mps_thread_pool_free (mps_context * s, mps_thread_pool * pool);
mps_thread_job_queue * mps_thread_job_queue_new (mps_context * s);
void mps_thread_job_queue_free (mps_thread_job_queue * q);
mps_thread_job mps_thread_job_queue_next (mps_context * s, mps_thread_job_queue * q);
void mps_thread_fpolzer (mps_context * s, int *nit, mps_boolean * excep, int required_zeros);
void mps_thread_mpolzer (mps_context * s, int *nit, mps_boolean * excep, int required_zeros);
void mps_thread_dpolzer (mps_context * s, int *nit, mps_boolean * excep, int required_zeros);
int mps_thread_get_core_number (mps_context * s);
int mps_thread_get_id (mps_context * s, mps_thread_pool * pool);
/* MACROS */
/**
* @brief Get a pointer to an array of n+2 booleans
* that is local to the thread.
*/
#define mps_thread_get_spar2(s, n_thread) (s->spar2 + (s->deg + 2) * (n_thread))
/**
* @brief Get a pointer to an array of n+1 multiprecision
* that is local to the thread.
*/
#define mps_thread_get_mfpc2(s, n_thread) (s->mfpc2 + (s->deg + 1) * (n_thread))
/**
* @brief Get a pointer to an array of n+2 DPE
* that is local to the thread.
*/
#define mps_thread_get_dap2(s, n_thread) (s->dap2 + (s->deg + 2) * (n_thread))
MPS_END_DECLS
#endif /* MPS_THREADING_H_ */
|