1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
|
#!
# -*- coding: utf-8 -*-
#
# Polynomial generator using sage
import subprocess, random, sys
# We need imaginary unit over Q
I = QuadraticField (-1, 'I').gen ()
random.seed()
class PolynomialGenerator():
def __init__(self):
self._degree = 0
self._x = var('x')
self._pol = 1
self._eps = Rational("1 / 100000000")
self._comment = "! Polygen generated polynomial\n"
self._comment += "! This polynomial has the following roots: \n"
def add_complex_root (self, complex_root, mult = 1):
self._pol *= (self._x - complex_root)**mult
self._comment += "!# (%s)\n" % str (N(complex_root, digits = 200)).replace (" +", "e0, ").replace (" -", "e0, - ").replace("*I", "e0")
def add_complex_conjugate_roots (self, complex_root, mult = 1):
self._pol *= (self._x - complex_root)**mult
self._pol *= (self._x - complex_root.conjugate ())**mult
def add_cluster (self, cluster_center, n):
for i in range(n):
gamma = Rational(RR(cos(2*i*pi/n))) + Rational(RR(sin(2*i*pi/n))) * I
gamma = gamma * self._eps
self.add_complex_root (cluster_center + gamma)
def get_pol_file (self):
self._pol = expand (self._pol)
coeffs = list (map (lambda x : x[0], self._pol.coefficients()))
imag_coeffs = list (map (lambda x : x.imag (), coeffs))
real = reduce (lambda x, y : x and y, map (lambda x : x == 0, imag_coeffs))
pol_file = self._comment + "\n"
pol_file += "Degree = %d;\n" % (len (coeffs) - 1)
# Check if the coefficients are real
if real:
pol_file += "Real;\n"
else:
pol_file += "Complex;\n"
# Determine poly structure
pol_file += "Rational;\n"
pol_file += "Monomial;\n"
pol_file += "\n"
for c in coeffs:
r = c.real ()
i = c.imag ()
pol_file += str (r) + " "
if not real:
pol_file += str (i) + " "
pol_file += "\n"
return pol_file
def usage ():
print "%s degree [type]" % sys.argv[0]
print ""
print " type can be one of: "
print " - separate: Well separate integer roots (Wilkinson-style), default choice"
print " - clustered: Polynomial with clusters of roots"
print " - mixed: Polynomial with both clusters and isolated roots"
print " - multiple: Polynomial with multiple roots"
print " - all: Polynomial with all the above"
print ""
sys.exit (1)
if __name__ == "__main__":
if (len (sys.argv) < 2 or len (sys.argv) > 3):
usage ()
polygen = PolynomialGenerator ()
n = int(sys.argv[1])
t = "separate"
if (len (sys.argv) == 3):
t = sys.argv[2]
integer_grid = range (1, 100)
if t == "separate":
for i in range(n):
polygen.add_complex_root (random.choice (integer_grid) +
random.choice (integer_grid) * I)
elif t == "clustered":
degree = 0
while degree < n:
step = random.choice (range (1, n - degree + 1))
polygen.add_cluster (random.choice (integer_grid) +
random.choice (integer_grid) * I, step)
degree += step
elif t == "mixed":
degree = 0
while degree < n:
if random.random() <= 0.7:
polygen.add_complex_root (random.choice (integer_grid) +
random.choice (integer_grid) * I)
degree += 1
else:
step = random.choice (range (1, n - degree + 1))
polygen.add_cluster (random.choice (integer_grid) +
random.choice (integer_grid) * I, step)
degree += step
elif t == "multiple":
pass
elif t == "all":
pass
else:
usage ()
print polygen.get_pol_file ()
|