1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
|
#!/usr/bin/env python3
# Copyright (c) 2017-2023 California Institute of Technology ("Caltech"). U.S.
# Government sponsorship acknowledged. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
r'''Visualize the difference in projection between N models
SYNOPSIS
$ mrcal-show-projection-diff before.cameramodel after.cameramodel
... a plot pops up showing how these two models differ in their projections
The operation of this tool is documented at
https://mrcal.secretsauce.net/differencing.html
This tool visualizes the results of mrcal.projection_diff()
It is often useful to compare the projection behavior of two camera models. For
instance, one may want to validate a calibration by comparing the results of two
different chessboard dances. Or one may want to evaluate the stability of the
intrinsics in response to mechanical or thermal stresses. This tool makes these
comparisons, and produces a visualization of the results.
In the most common case we're given exactly 2 models to compare. We then display
the projection difference as either a vector field or a heat map. If we're given
more than 2 models, then a vector field isn't possible and we instead display as
a heatmap the standard deviation of the differences between models 1..N and
model0.
The top-level operation of this tool:
- Grid the imager
- Unproject each point in the grid using one camera model
- Apply a transformation to map this point from one camera's coord system to the
other. How we obtain this transformation is described below
- Project the transformed points to the other camera
- Look at the resulting pixel difference in the reprojection
Several arguments control how we obtain the transformation. Top-level logic:
if --intrinsics-only:
Rt10 = identity_Rt()
else:
if --radius 0:
Rt10 = relative_extrinsics(models)
else:
Rt10 = implied_Rt10__from_unprojections()
The details of how the comparison is computed, and the meaning of the arguments
controlling this, are in the docstring of mrcal.projection_diff().
'''
import sys
import argparse
import re
import os
def parse_args():
parser = \
argparse.ArgumentParser(description = __doc__,
formatter_class=argparse.RawDescriptionHelpFormatter)
parser.add_argument('--gridn',
type=int,
default = (60,40),
nargs = 2,
help='''How densely we should sample the imager. By default we use a 60x40 grid''')
parser.add_argument('--distance',
type=str,
help='''Has an effect only without --intrinsics-only.
The projection difference varies depending on the range
to the observed world points, with the queried range set
in this argument. If omitted we look out to infinity. We
can also fit multiple distances at the same time by
passing them here in a comma-separated, whitespace-less
list. If multiple distances are given, we fit the
implied-by-the-intrinsics transformation using ALL the
distances, but we display the difference for the FIRST
distance given.''')
parser.add_argument('--intrinsics-only',
action='store_true',
help='''If given, we evaluate the intrinsics of each
lens in isolation by assuming that the coordinate
systems of each camera line up exactly''')
parser.add_argument('--where',
type=float,
nargs=2,
help='''Center of the region of interest for this diff.
Used only without --intrinsics-only and without
"--radius 0". It is usually impossible for the models to
match everywhere, but focusing on a particular area can
work better. The implied transformation will be fit to
match as large as possible an area centered on this
argument. If omitted, we will focus on the center of the
imager''')
parser.add_argument('--radius',
type=float,
default=-1.,
help='''Radius of the region of interest. If ==0, we do
NOT fit an implied transformation at all, but use the
transformations in the models. If omitted or <0, we use
a "reasonable" value: the whole imager if we're using
uncertainties, or min(width,height)/6 if
--no-uncertainties. To fit with data across the whole
imager in either case, pass in a very large radius''')
parser.add_argument('--same-dance',
action='store_true',
default=False,
help=argparse.SUPPRESS)
'''--same-dance IS NOT READY FOR PUBLIC CONSUMPTION. It is purposely
undocumented. If given, I assume that the given models all came from the
same calibration dance, and I can thus compute implied_Rt10 geometrically,
instead of fitting projections. Valid only if we're given exactly two
models. Exclusive with --where and --radius (those control the fit that we
skip with --same-dance
If putting this back, this was a part of the docstring for this tool:
- If we know that our models came from different interpretations of the same
board dance (using different lens models or optimization parameters, for
instance), we can use the geometry of the cameras and frames to compute
implied_Rt10. Indicate this case by passing --same-dance
'''
parser.add_argument('--observations',
action='store_true',
default=False,
help='''If given, I show where the chessboard corners were observed at calibration
time. These should correspond to the low-diff regions.''')
parser.add_argument('--valid-intrinsics-region',
action='store_true',
default=False,
help='''If given, I overlay the valid-intrinsics regions onto the plot''')
parser.add_argument('--cbmax',
type=float,
default=4,
help='''Maximum range of the colorbar''')
parser.add_argument('--title',
type=str,
default = None,
help='''Title string for the plot. Overrides the default
title. Exclusive with --extratitle''')
parser.add_argument('--extratitle',
type=str,
default = None,
help='''Additional string for the plot to append to the
default title. Exclusive with --title''')
parser.add_argument('--vectorfield',
action = 'store_true',
default = False,
help='''Plot the diff as a vector field instead of as a heat map. The vector field
contains more information (magnitude AND direction), but
is less clear at a glance''')
parser.add_argument('--vectorscale',
type = float,
default = 1.0,
help='''If plotting a vectorfield, scale all the vectors by this factor. Useful to
improve legibility if the vectors are too small to
see''')
parser.add_argument('--directions',
action = 'store_true',
help='''If given, the plots are color-coded by the direction of the error, instead of
the magnitude''')
parser.add_argument('--no-uncertainties',
action = 'store_true',
help='''Used only without --intrinsics-only and without
"--radius 0". By default we use the uncertainties in the
model to weigh the fit. This will focus the fit on the
confident region in the models without --where or
--radius. The computation will run faster with
--no-uncertainties, but the default --where and --radius
may need to be adjusted''')
parser.add_argument('--hardcopy',
type=str,
help='''Write the output to disk, instead of making an interactive plot''')
parser.add_argument('--terminal',
type=str,
help=r'''gnuplotlib terminal. The default is good almost always, so most people don't
need this option''')
parser.add_argument('--set',
type=str,
action='append',
help='''Extra 'set' directives to gnuplotlib. Can be given multiple times''')
parser.add_argument('--unset',
type=str,
action='append',
help='''Extra 'unset' directives to gnuplotlib. Can be given multiple times''')
parser.add_argument('models',
type=str,
nargs='+',
help='''Camera models to diff''')
args = parser.parse_args()
if len(args.models) < 2:
print(f"I need at least two models to diff. Instead got '{args.models}'", file=sys.stderr)
sys.exit(1)
if args.title is not None and \
args.extratitle is not None:
print("--title and --extratitle are exclusive", file=sys.stderr)
sys.exit(1)
return args
args = parse_args()
# arg-parsing is done before the imports so that --help works without building
# stuff, so that I can generate the manpages and README
if args.vectorscale != 1.0 and not args.vectorfield:
print("Error: --vectorscale only makes sense with --vectorfield",
file = sys.stderr)
sys.exit(1)
if args.distance is None:
distance = None
else:
try:
distance = [float(d) for d in args.distance.split(',')]
except:
print("Error: distances must be given a comma-separated list of floats in --distance",
file = sys.stderr)
sys.exit(1)
if len(args.models) > 2:
if args.vectorfield:
print("Error: --vectorfield works only with exactly 2 models",
file = sys.stderr)
sys.exit(1)
if args.directions:
print("Error: --directions works only with exactly 2 models",
file = sys.stderr)
sys.exit(1)
if args.same_dance:
print("Error: --same-dance works only with exactly 2 models",
file = sys.stderr)
sys.exit(1)
if args.same_dance and \
(args.where is not None or args.radius >= 0):
print("Error: --same-dance is exclusive with --where and --radius",
file = sys.stderr)
sys.exit(1)
import mrcal
import numpy as np
import numpysane as nps
plotkwargs_extra = {}
if args.set is not None:
plotkwargs_extra['set'] = args.set
if args.unset is not None:
plotkwargs_extra['unset'] = args.unset
if args.title is not None:
plotkwargs_extra['title'] = args.title
if args.extratitle is not None:
plotkwargs_extra['extratitle'] = args.extratitle
def openmodel(f):
try:
return mrcal.cameramodel(f)
except Exception as e:
print(f"Couldn't load camera model '{f}': {e}",
file=sys.stderr)
sys.exit(1)
models = [openmodel(modelfilename) for modelfilename in args.models]
if args.same_dance:
# EXPERIMENTAL, UNDOCUMENTED STUFF
if 1:
# default method: fit the corner observations in the coord system of the
# camera. Each observation contributes a point to the fit
# I need to make sure to pick the same inlier set when choosing the frame
# observations. I pick the intersection of the two
i_f_ci_ce = [model.optimization_inputs()['indices_frame_camintrinsics_camextrinsics'] \
for model in models]
if i_f_ci_ce[0].shape != i_f_ci_ce[1].shape or \
not np.all(i_f_ci_ce[0] == i_f_ci_ce[1]):
print(f"--same-dance means that the two models must have an identical indices_frame_camintrinsics_camextrinsics, but they do not. Shapes {i_f_ci_ce[0].shape},{i_f_ci_ce[1].shape}",
file=sys.stderr)
sys.exit(1)
obs = [model.optimization_inputs()['observations_board'] \
for model in models]
if obs[0].shape != obs[1].shape:
print(f"--same-dance means that the two models must have an identically-laid-out observations_board, but they do not. Shapes {obs[0].shape},{obs[1].shape}",
file=sys.stderr)
sys.exit(1)
idx_inliers = [ obs[i][ ...,2] > 0 \
for i in range(len(models)) ]
calobjects = \
[ mrcal.hypothesis_board_corner_positions(model.icam_intrinsics(),
**model.optimization_inputs(),
idx_inliers = idx_inliers[0]*idx_inliers[1] )[-2] \
for model in models ]
Rt10 = mrcal.align_procrustes_points_Rt01(calobjects[1], calobjects[0])
elif 1:
# new method being tested. Fit the corners in the ref coordinate
# systems. This explicitly models the extra existing rotation, so it
# should be most correct
optimization_inputs0 = models[0].optimization_inputs()
optimization_inputs1 = models[1].optimization_inputs()
calobject_height,calobject_width = optimization_inputs0['observations_board'].shape[1:3]
calobject_spacing = optimization_inputs0['calibration_object_spacing']
# shape (Nh, Nw, 3)
calibration_object0 = \
mrcal.ref_calibration_object(calobject_width, calobject_height,
calobject_spacing,
calobject_warp = optimization_inputs0['calobject_warp'])
calibration_object1 = \
mrcal.ref_calibration_object(calobject_width, calobject_height,
calobject_spacing,
calobject_warp = optimization_inputs1['calobject_warp'])
# shape (Nframes, Nh, Nw, 3)
pcorners_ref0 = \
mrcal.transform_point_rt( nps.mv( optimization_inputs0['rt_ref_frame'], -2, -4),
calibration_object0 )
pcorners_ref1 = \
mrcal.transform_point_rt( nps.mv( optimization_inputs1['rt_ref_frame'], -2, -4),
calibration_object1 )
# shape (4,3)
Rt_ref10 = mrcal.align_procrustes_points_Rt01(# shape (N,3)
nps.clump(pcorners_ref1, n=3),
# shape (N,3)
nps.clump(pcorners_ref0, n=3))
# I have the ref-ref transform. I convert to a cam-cam transform
icam_extrinsics0 = \
mrcal.corresponding_icam_extrinsics(models[0].icam_intrinsics(),
**optimization_inputs0)
icam_extrinsics1 = \
mrcal.corresponding_icam_extrinsics(models[1].icam_intrinsics(),
**optimization_inputs1)
if icam_extrinsics0 >= 0:
Rt_cr0 = mrcal.Rt_from_rt(optimization_inputs0['rt_cam_ref'][icam_extrinsics0])
else:
Rt_cr0 = mrcal.identity_Rt()
if icam_extrinsics1 >= 0:
Rt_cr1 = mrcal.Rt_from_rt(optimization_inputs1['rt_cam_ref'][icam_extrinsics1])
else:
Rt_cr1 = mrcal.identity_Rt()
Rt10 = \
mrcal.compose_Rt(Rt_cr1,
Rt_ref10,
mrcal.invert_Rt(Rt_cr0))
else:
# default method used in the uncertainty computation. compute the mean
# of the frame points
optimization_inputs0 = models[0].optimization_inputs()
icam_intrinsics0 = models[0].icam_intrinsics()
icam_extrinsics0 = \
mrcal.corresponding_icam_extrinsics(icam_intrinsics0, **optimization_inputs0)
if icam_extrinsics0 >= 0:
Rt_rc0 = mrcal.invert_Rt(mrcal.Rt_from_rt(optimization_inputs0['rt_cam_ref'][icam_extrinsics0]))
else:
Rt_rc0 = mrcal.identity_Rt()
Rt_fr0 = mrcal.invert_Rt(mrcal.Rt_from_rt(optimization_inputs0['rt_ref_frame']))
optimization_inputs1 = models[1].optimization_inputs()
icam_intrinsics1 = models[1].icam_intrinsics()
icam_extrinsics1 = \
mrcal.corresponding_icam_extrinsics(icam_intrinsics1, **optimization_inputs1)
if icam_extrinsics1 >= 0:
Rt_cr1 = mrcal.Rt_from_rt(optimization_inputs1['rt_cam_ref'][icam_extrinsics1])
else:
Rt_cr1 = mrcal.identity_Rt()
Rt_rf1 = mrcal.Rt_from_rt(optimization_inputs1['rt_ref_frame'])
# not a geometric transformation: the R is not in SO3
Rt_r1r0 = np.mean( mrcal.compose_Rt(Rt_rf1, Rt_fr0), axis=-3)
Rt_c1c0 = mrcal.compose_Rt( Rt_cr1, Rt_r1r0, Rt_rc0)
q0 = models[0].imagersize()*2./5.
v0_cam = mrcal.unproject(q0, optimization_inputs0['lensmodel'], optimization_inputs0['intrinsics'][icam_intrinsics0],
normalize = True)
p0_cam = v0_cam * (1e5 if distance is None else distance)
# print(f"v0_cam = {v0_cam}")
# print(f"reprojected = {mrcal.project(v0_cam, optimization_inputs0['lensmodel'], optimization_inputs0['intrinsics'][icam_intrinsics0])}")
# print(f"reprojected other = {mrcal.project(np.array([-0.2471004,-0.21598248,0.9446126 ]), optimization_inputs0['lensmodel'], optimization_inputs0['intrinsics'][icam_intrinsics0])}")
# print(f"reprojected other = {mrcal.project(np.array([-0.2471004,-0.21598248,0.9446126 ]), *models[0].intrinsics())}")
# print(f"p0_cam = {p0_cam}")
p0_ref = mrcal.transform_point_Rt(Rt_rc0, p0_cam)
p0_frame = mrcal.transform_point_Rt(Rt_fr0, p0_ref)
p1_refall = mrcal.transform_point_Rt(Rt_rf1, p0_frame)
p1_ref = np.mean(p1_refall, axis=0)
# print(f"p0_ref = {p0_ref}")
# print(f"rt_rf0[0] = {optimization_inputs0['rt_ref_frame'][0]}")
# print(f"Rt_fr0[0] = {Rt_fr0[0]}")
# print(f"p0_frame = {p0_frame}")
# print(f"p1_refall = {p1_refall}")
# print(f"p1_ref = {p1_ref}")
p1_cam = mrcal.transform_point_Rt(Rt_cr1, p1_ref)
q1 = mrcal.project(p1_cam, *models[1].intrinsics())
# print(f"p1_cam = {p1_cam}")
# print(f"q1 = {q1}")
# print(f"before:\n{Rt10}")
Rt10 = Rt_r1r0
# print(f"after:\n{Rt10}")
# print(f"--same-dance Rt10: {Rt10}")
# print(f"--same-dance Ninliers = {np.count_nonzero(idx_inliers[0]*idx_inliers[1])} Ntotal = {np.size(idx_inliers[0])}")
# print(f"idx_inliers[0].shape: {idx_inliers[0].shape}")
# import gnuplotlib as gp
# gp.plot(nps.mag(calobjects[0] - calobjects[1]), wait=1)
# # gp.plot( (calobjects[0] - calobjects[1],), tuplesize=-3, _with='points', square=1, _3d=1, xlabel='x', ylabel = 'y', zlabel = 'z')
# # import IPython
# # IPython.embed()
# # sys.exit()
if args.observations:
optimization_inputs = [ m.optimization_inputs() for m in models ]
if any( oi is None for oi in optimization_inputs ):
print("mrcal-show-projection-diff --observations requires optimization_inputs to be available for all models, but this is missing for some models",
file=sys.stderr)
sys.exit(1)
plot,Rt10 = mrcal.show_projection_diff(models,
gridn_width = args.gridn[0],
gridn_height = args.gridn[1],
observations = args.observations,
valid_intrinsics_region = args.valid_intrinsics_region,
distance = distance,
intrinsics_only = args.intrinsics_only,
use_uncertainties = not args.no_uncertainties,
focus_center = args.where,
focus_radius = args.radius,
vectorfield = args.vectorfield,
vectorscale = args.vectorscale,
directions = args.directions,
hardcopy = args.hardcopy,
terminal = args.terminal,
cbmax = args.cbmax,
**plotkwargs_extra)
if not args.intrinsics_only and args.radius != 0 and \
Rt10 is not None and Rt10.shape == (4,3):
rt10 = mrcal.rt_from_Rt(Rt10)
print(f"Transformation cam1 <-- cam0: rotation: {nps.mag(rt10[:3])*180./np.pi:.03f} degrees, translation: {rt10[3:]} m")
dist_shift = nps.mag(rt10[3:])
if dist_shift > 0.01:
msg = f"## WARNING: fitted camera moved by {dist_shift:.03f}m. This is probably aphysically high, and something is wrong. Pass both a high and a low --distance? See the docs at https://mrcal.secretsauce.net/differencing.html"
print(msg, file=sys.stderr)
if args.hardcopy is None:
plot.wait()
|