File: poseutils.c

package info (click to toggle)
mrcal 2.5-2
  • links: PTS, VCS
  • area: main
  • in suites:
  • size: 8,560 kB
  • sloc: python: 40,604; ansic: 15,576; cpp: 1,754; perl: 303; makefile: 158; sh: 98; lisp: 84
file content (1695 lines) | stat: -rw-r--r-- 63,895 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
// Copyright (c) 2017-2023 California Institute of Technology ("Caltech"). U.S.
// Government sponsorship acknowledged. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0

// Apparently I need this in MSVC to get constants
#define _USE_MATH_DEFINES

#include <stdio.h>
#include <string.h>
#include <math.h>

#include "poseutils.h"
#include "_strides.h"
#include "minimath/minimath.h"

// All arrays stored in row-major order
//
// I have two different representations of pose transformations:
//
// - Rt is a concatenated (4,3) array: Rt = nps.glue(R,t, axis=-2). The
//   transformation is R*x+t
//
// - rt is a concatenated (6) array: rt = nps.glue(r,t, axis=-1). The
//   transformation is R*x+t where R = R_from_r(r)


// row vectors: vout = matmult(v,Mt)
// equivalent col vector expression: vout = matmult(M,v)
#define mul_vec3_gen33t_vout_scaled_full(vout, vout_stride0,            \
                                         v,    v_stride0,               \
                                         Mt,   Mt_stride0, Mt_stride1,  \
                                         scale)                         \
    do {                                                                \
        /* needed for in-place operations */                            \
        double outcopy[3] = {                                           \
            scale *                                                     \
            (_P2(Mt,Mt_stride0,Mt_stride1,0,0)*_P1(v,v_stride0,0) +     \
             _P2(Mt,Mt_stride0,Mt_stride1,0,1)*_P1(v,v_stride0,1) +     \
             _P2(Mt,Mt_stride0,Mt_stride1,0,2)*_P1(v,v_stride0,2) ),    \
            scale *                                                     \
            (_P2(Mt,Mt_stride0,Mt_stride1,1,0)*_P1(v,v_stride0,0) +     \
             _P2(Mt,Mt_stride0,Mt_stride1,1,1)*_P1(v,v_stride0,1) +     \
             _P2(Mt,Mt_stride0,Mt_stride1,1,2)*_P1(v,v_stride0,2) ),    \
            scale *                                                     \
            (_P2(Mt,Mt_stride0,Mt_stride1,2,0)*_P1(v,v_stride0,0) +     \
             _P2(Mt,Mt_stride0,Mt_stride1,2,1)*_P1(v,v_stride0,1) +     \
             _P2(Mt,Mt_stride0,Mt_stride1,2,2)*_P1(v,v_stride0,2) ) };  \
        _P1(vout,vout_stride0,0) = outcopy[0];                          \
        _P1(vout,vout_stride0,1) = outcopy[1];                          \
        _P1(vout,vout_stride0,2) = outcopy[2];                          \
    } while(0)
#define mul_vec3_gen33t_vout_full(vout, vout_stride0,                   \
                                  v,    v_stride0,                      \
                                  Mt,   Mt_stride0, Mt_stride1)         \
    mul_vec3_gen33t_vout_scaled_full(vout, vout_stride0,                \
                                     v,    v_stride0,                   \
                                     Mt,   Mt_stride0, Mt_stride1, 1.0)
// row vectors: vout = scale*matmult(v,M)
#define mul_vec3_gen33_vout_scaled_full(vout, vout_stride0,             \
                                        v,    v_stride0,                \
                                        M,    M_stride0, M_stride1,     \
                                        scale)                          \
    do {                                                                \
        /* needed for in-place operations */                            \
        double outcopy[3] = {                                           \
            scale *                                                     \
            (_P2(M,M_stride0,M_stride1,0,0)*_P1(v,v_stride0,0) +        \
             _P2(M,M_stride0,M_stride1,1,0)*_P1(v,v_stride0,1) +        \
             _P2(M,M_stride0,M_stride1,2,0)*_P1(v,v_stride0,2)),        \
            scale *                                                     \
            (_P2(M,M_stride0,M_stride1,0,1)*_P1(v,v_stride0,0) +        \
             _P2(M,M_stride0,M_stride1,1,1)*_P1(v,v_stride0,1) +        \
             _P2(M,M_stride0,M_stride1,2,1)*_P1(v,v_stride0,2)),        \
            scale *                                                     \
            (_P2(M,M_stride0,M_stride1,0,2)*_P1(v,v_stride0,0) +        \
             _P2(M,M_stride0,M_stride1,1,2)*_P1(v,v_stride0,1) +        \
             _P2(M,M_stride0,M_stride1,2,2)*_P1(v,v_stride0,2)) };      \
        _P1(vout,vout_stride0,0) = outcopy[0];                          \
        _P1(vout,vout_stride0,1) = outcopy[1];                          \
        _P1(vout,vout_stride0,2) = outcopy[2];                          \
    } while(0)
#define mul_vec3_gen33_vout_full(vout, vout_stride0,                   \
                                 v,    v_stride0,                       \
                                 Mt,   Mt_stride0, Mt_stride1)          \
    mul_vec3_gen33_vout_scaled_full(vout, vout_stride0,                 \
                                    v,    v_stride0,                    \
                                    Mt,   Mt_stride0, Mt_stride1, 1.0)

// row vectors: vout = matmult(v,Mt)
// equivalent col vector expression: vout = matmult(M,v)
#define mul_vec3_gen33t_vaccum_full(vout, vout_stride0,                 \
                                    v,    v_stride0,                    \
                                    Mt,   Mt_stride0, Mt_stride1)       \
    do {                                                                \
        /* needed for in-place operations */                            \
        double outcopy[3] = {                                           \
            _P1(vout,vout_stride0,0) +                                  \
            _P2(Mt,Mt_stride0,Mt_stride1,0,0)*_P1(v,v_stride0,0) +      \
            _P2(Mt,Mt_stride0,Mt_stride1,0,1)*_P1(v,v_stride0,1) +      \
            _P2(Mt,Mt_stride0,Mt_stride1,0,2)*_P1(v,v_stride0,2),       \
            _P1(vout,vout_stride0,1) +                                  \
            _P2(Mt,Mt_stride0,Mt_stride1,1,0)*_P1(v,v_stride0,0) +      \
            _P2(Mt,Mt_stride0,Mt_stride1,1,1)*_P1(v,v_stride0,1) +      \
            _P2(Mt,Mt_stride0,Mt_stride1,1,2)*_P1(v,v_stride0,2),       \
            _P1(vout,vout_stride0,2) +                                  \
            _P2(Mt,Mt_stride0,Mt_stride1,2,0)*_P1(v,v_stride0,0) +      \
            _P2(Mt,Mt_stride0,Mt_stride1,2,1)*_P1(v,v_stride0,1) +      \
            _P2(Mt,Mt_stride0,Mt_stride1,2,2)*_P1(v,v_stride0,2) };     \
        _P1(vout,vout_stride0,0) = outcopy[0];                          \
        _P1(vout,vout_stride0,1) = outcopy[1];                          \
        _P1(vout,vout_stride0,2) = outcopy[2];                          \
    } while(0)

// row vectors: vout = scale*matmult(v,M)
#define mul_vec3_gen33_vaccum_scaled_full(vout, vout_stride0,           \
                                          v,    v_stride0,              \
                                          M,    M_stride0, M_stride1,   \
                                          scale)                        \
    do {                                                                \
        /* needed for in-place operations */                            \
        double outcopy[3] = {                                           \
            _P1(vout,vout_stride0,0) + scale *                          \
            (_P2(M,M_stride0,M_stride1,0,0)*_P1(v,v_stride0,0) +        \
             _P2(M,M_stride0,M_stride1,1,0)*_P1(v,v_stride0,1) +        \
             _P2(M,M_stride0,M_stride1,2,0)*_P1(v,v_stride0,2)),        \
            _P1(vout,vout_stride0,1) + scale *                          \
            (_P2(M,M_stride0,M_stride1,0,1)*_P1(v,v_stride0,0) +        \
             _P2(M,M_stride0,M_stride1,1,1)*_P1(v,v_stride0,1) +        \
             _P2(M,M_stride0,M_stride1,2,1)*_P1(v,v_stride0,2)),        \
            _P1(vout,vout_stride0,2) + scale *                          \
            (_P2(M,M_stride0,M_stride1,0,2)*_P1(v,v_stride0,0) +        \
             _P2(M,M_stride0,M_stride1,1,2)*_P1(v,v_stride0,1) +        \
             _P2(M,M_stride0,M_stride1,2,2)*_P1(v,v_stride0,2)) };      \
        _P1(vout,vout_stride0,0) = outcopy[0];                          \
        _P1(vout,vout_stride0,1) = outcopy[1];                          \
        _P1(vout,vout_stride0,2) = outcopy[2];                          \
    } while(0)

// multiply two (3,3) matrices
static inline
void mul_gen33_gen33_vout_full(// output
                               double* m0m1,
                               int m0m1_stride0, int m0m1_stride1,

                               // input
                               const double* m0,
                               int m0_stride0, int m0_stride1,
                               const double* m1,
                               int m1_stride0, int m1_stride1)
{
    /* needed for in-place operations */
    double outcopy2[9];

    for(int i=0; i<3; i++)
        // one row at a time
        mul_vec3_gen33_vout_scaled_full(&outcopy2[i*3], sizeof(outcopy2[0]),
                                        &_P2(m0  ,  m0_stride0,  m0_stride1,  i,0),   m0_stride1,
                                        m1, m1_stride0, m1_stride1,
                                        1.0);
    for(int i=0; i<3; i++)
        for(int j=0; j<3; j++)
            P2(m0m1, i,j) = outcopy2[3*i+j];
}
static inline
void mul_gen33t_gen33_vout_full(// output
                                double* m0m1,
                                int m0m1_stride0, int m0m1_stride1,

                                // input
                                const double* m0,
                                int m0_stride0, int m0_stride1,
                                const double* m1,
                                int m1_stride0, int m1_stride1)
{
    mul_gen33_gen33_vout_full(m0m1,
                              m0m1_stride0, m0m1_stride1,
                              m0,
                              m0_stride1, m0_stride0,
                              m1,
                              m1_stride0, m1_stride1);
}
static inline
void mul_gen33_gen33t_vout_full(// output
                                double* m0m1,
                                int m0m1_stride0, int m0m1_stride1,

                                // input
                                const double* m0,
                                int m0_stride0, int m0_stride1,
                                const double* m1,
                                int m1_stride0, int m1_stride1)
{
    mul_gen33_gen33_vout_full(m0m1,
                              m0m1_stride0, m0m1_stride1,
                              m0,
                              m0_stride0, m0_stride1,
                              m1,
                              m1_stride1, m1_stride0);
}
static inline
void mul_gen33t_gen33t_vout_full(// output
                                double* m0m1,
                                int m0m1_stride0, int m0m1_stride1,

                                // input
                                const double* m0,
                                int m0_stride0, int m0_stride1,
                                const double* m1,
                                int m1_stride0, int m1_stride1)
{
    mul_gen33_gen33_vout_full(m0m1,
                              m0m1_stride0, m0m1_stride1,
                              m0,
                              m0_stride1, m0_stride0,
                              m1,
                              m1_stride1, m1_stride0);
}

static inline
double inner3(const double* restrict a,
              const double* restrict b)
{
    double s = 0.0;
    for (int i=0; i<3; i++) s += a[i]*b[i];
    return s;
}




// Make an identity rotation or transformation
void mrcal_identity_R_full(double* R,      // (3,3) array
                           int R_stride0,  // in bytes. <= 0 means "contiguous"
                           int R_stride1   // in bytes. <= 0 means "contiguous"
                           )
{
    init_stride_2D(R, 3,3);
    P2(R, 0,0) = 1.0; P2(R, 0,1) = 0.0; P2(R, 0,2) = 0.0;
    P2(R, 1,0) = 0.0; P2(R, 1,1) = 1.0; P2(R, 1,2) = 0.0;
    P2(R, 2,0) = 0.0; P2(R, 2,1) = 0.0; P2(R, 2,2) = 1.0;
}
void mrcal_identity_r_full(double* r,      // (3,) array
                           int r_stride0   // in bytes. <= 0 means "contiguous"
                           )
{
    init_stride_1D(r, 3);
    P1(r, 0) = 0.0; P1(r, 1) = 0.0; P1(r, 2) = 0.0;
}
void mrcal_identity_Rt_full(double* Rt,      // (4,3) array
                            int Rt_stride0,  // in bytes. <= 0 means "contiguous"
                            int Rt_stride1   // in bytes. <= 0 means "contiguous"
                            )
{
    init_stride_2D(Rt, 4,3);
    mrcal_identity_R_full(Rt, Rt_stride0, Rt_stride1);
    for(int i=0; i<3; i++) P2(Rt, 3, i) = 0.0;
}
void mrcal_identity_rt_full(double* rt,      // (6,) array
                            int rt_stride0   // in bytes. <= 0 means "contiguous"
                            )
{
    init_stride_1D(rt, 6);
    mrcal_identity_r_full(rt, rt_stride0);
    for(int i=0; i<3; i++) P1(rt, i+3) = 0.0;
}

void mrcal_rotate_point_R_full( // output
                               double* x_out,      // (3,) array
                               int x_out_stride0,  // in bytes. <= 0 means "contiguous"
                               double* J_R,        // (3,3,3) array. May be NULL
                               int J_R_stride0,    // in bytes. <= 0 means "contiguous"
                               int J_R_stride1,    // in bytes. <= 0 means "contiguous"
                               int J_R_stride2,    // in bytes. <= 0 means "contiguous"
                               double* J_x,        // (3,3) array. May be NULL
                               int J_x_stride0,    // in bytes. <= 0 means "contiguous"
                               int J_x_stride1,    // in bytes. <= 0 means "contiguous"

                               // input
                               const double* R,    // (3,3) array. May be NULL
                               int R_stride0,      // in bytes. <= 0 means "contiguous"
                               int R_stride1,      // in bytes. <= 0 means "contiguous"
                               const double* x_in, // (3,) array. May be NULL
                               int x_in_stride0,   // in bytes. <= 0 means "contiguous"

                               bool inverted       // if true, I apply a
                                                   // rotation in the opposite
                                                   // direction. J_R corresponds
                                                   // to the input R
                                )
{
    init_stride_1D(x_out, 3);
    init_stride_3D(J_R,   3,3,3 );
    init_stride_2D(J_x,   3,3 );
    init_stride_2D(R,     3,3 );
    init_stride_1D(x_in,  3 );

    if(inverted)
    {
        // transpose R
        int tmp;

        tmp = R_stride0;
        R_stride0 = R_stride1;
        R_stride1 = tmp;

        tmp = J_R_stride1;
        J_R_stride1 = J_R_stride2;
        J_R_stride2 = tmp;
    }

    if(J_R)
    {
        // out[i] = inner(R[i,:],in)
        for(int i=0; i<3; i++)
        {
            int j=0;
            for(; j<i; j++)
                for(int k=0; k<3; k++)
                    P3(J_R, i,j,k) = 0.0;
            for(int k=0; k<3; k++)
                P3(J_R, i,j,k) = P1(x_in, k);
            for(j++; j<3; j++)
                for(int k=0; k<3; k++)
                    P3(J_R, i,j,k) = 0.0;
        }
    }
    if(J_x)
        for(int i=0; i<3; i++)
            for(int j=0; j<3; j++)
                P2(J_x, i,j) = P2(R, i,j);

    // R*x
    mul_vec3_gen33t_vout_full(x_out, x_out_stride0,
                              x_in,  x_in_stride0,
                              R,     R_stride0, R_stride1);
}


// mrcal_rotate_point_r() uses auto-differentiation, so it's implemented in C++
// in poseutils-uses-autodiff.cc


// Apply a transformation to a point
void mrcal_transform_point_Rt_full( // output
                                   double* x_out,      // (3,) array
                                   int x_out_stride0,  // in bytes. <= 0 means "contiguous"
                                   double* J_Rt,       // (3,4,3) array. May be NULL
                                   int J_Rt_stride0,   // in bytes. <= 0 means "contiguous"
                                   int J_Rt_stride1,   // in bytes. <= 0 means "contiguous"
                                   int J_Rt_stride2,   // in bytes. <= 0 means "contiguous"
                                   double* J_x,        // (3,3) array. May be NULL
                                   int J_x_stride0,    // in bytes. <= 0 means "contiguous"
                                   int J_x_stride1,    // in bytes. <= 0 means "contiguous"

                                   // input
                                   const double* Rt,   // (4,3) array. May be NULL
                                   int Rt_stride0,     // in bytes. <= 0 means "contiguous"
                                   int Rt_stride1,     // in bytes. <= 0 means "contiguous"
                                   const double* x_in, // (3,) array. May be NULL
                                   int x_in_stride0,   // in bytes. <= 0 means "contiguous"

                                   bool inverted       // if true, I apply a
                                                       // transformation in the opposite
                                                       // direction. J_Rt corresponds
                                                       // to the input Rt
                                    )
{
    init_stride_1D(x_out, 3);
    init_stride_3D(J_Rt,  3,4,3 );
    // init_stride_2D(J_x,   3,3 );
    init_stride_2D(Rt,    4,3 );
    init_stride_1D(x_in,  3 );

    if(!inverted)
    {
        // for in-place operation
        double t[] = { P2(Rt,3,0), P2(Rt,3,1), P2(Rt,3,2) };

        // I want R*x + t
        // First R*x
        mrcal_rotate_point_R_full(x_out, x_out_stride0,
                                  J_Rt,  J_Rt_stride0,  J_Rt_stride1, J_Rt_stride2,
                                  J_x,   J_x_stride0,   J_x_stride1,
                                  Rt,    Rt_stride0,    Rt_stride1,
                                  x_in,  x_in_stride0,
                                  false);

        // And now +t. The J_R, J_x gradients are unaffected. J_t is identity
        for(int i=0; i<3; i++)
            P1(x_out,i) += t[i];
        if(J_Rt)
            mrcal_identity_R_full(&P3(J_Rt,0,3,0), J_Rt_stride0, J_Rt_stride2);
    }
    else
    {
        // inverted operation means
        //   y = transpose(R) (x - t)

        double x_minus_t[] = { P1(x_in,0) - P2(Rt,3,0),
                               P1(x_in,1) - P2(Rt,3,1),
                               P1(x_in,2) - P2(Rt,3,2)};

        // Compute. After this:
        //   x_out is done
        //   J_R is done
        //   J_x is done
        mrcal_rotate_point_R_full(x_out, x_out_stride0,
                                  J_Rt,  J_Rt_stride0,  J_Rt_stride1, J_Rt_stride2,
                                  J_x,   J_x_stride0,   J_x_stride1,
                                  Rt,    Rt_stride0,    Rt_stride1,
                                  x_minus_t,  sizeof(double),
                                  true);

        // I want J_t = -transpose(R)
        if(J_Rt)
            for(int i=0; i<3; i++)
                for(int j=0; j<3; j++)
                    P3(J_Rt, i, 3, j) = -P2(Rt, j, i);
    }
}

// Invert a rotation matrix. This is a transpose
//
// The input is given in R_in in a (3,3) array
//
// The result is returned in a (3,3) array R_out. In-place operation is
// supported
void mrcal_invert_R_full( // output
                         double* R_out,      // (3,3) array
                         int R_out_stride0,  // in bytes. <= 0 means "contiguous"
                         int R_out_stride1,  // in bytes. <= 0 means "contiguous"

                         // input
                         const double* R_in, // (3,3) array
                         int R_in_stride0,   // in bytes. <= 0 means "contiguous"
                         int R_in_stride1    // in bytes. <= 0 means "contiguous"
                         )
{
    init_stride_2D(R_out, 3,3);
    init_stride_2D(R_in,  3,3);

    // transpose(R). Extra stuff to make in-place operations work
    for(int i=0; i<3; i++)
        P2(R_out,i,i) = P2(R_in,i,i);
    for(int i=0; i<3; i++)
        for(int j=i+1; j<3; j++)
        {
            double tmp = P2(R_in,i,j);
            P2(R_out,i,j) = P2(R_in,j,i);
            P2(R_out,j,i) = tmp;
        }
}

// Convert a transformation representation from Rt to rt. This is mostly a
// convenience functions since 99% of the work is done by mrcal_r_from_R().
void mrcal_rt_from_Rt_full(// output
                           double* rt,      // (6,) vector
                           int rt_stride0,  // in bytes. <= 0 means "contiguous"
                           double* J_R,     // (3,3,3) array. Gradient. May be NULL
                           // No J_t. It's always the identity
                           int J_R_stride0, // in bytes. <= 0 means "contiguous"
                           int J_R_stride1, // in bytes. <= 0 means "contiguous"
                           int J_R_stride2, // in bytes. <= 0 means "contiguous"

                           // input
                           const double* Rt,  // (4,3) array
                           int Rt_stride0,    // in bytes. <= 0 means "contiguous"
                           int Rt_stride1     // in bytes. <= 0 means "contiguous"
                           )
{
    mrcal_r_from_R_full(rt,  rt_stride0,
                        J_R, J_R_stride0, J_R_stride1, J_R_stride2,
                        Rt,  Rt_stride0,  Rt_stride1);

    init_stride_1D(rt,  6);
    // init_stride_3D(J_R, 3,3,3);
    init_stride_2D(Rt,  4,3);

    for(int i=0; i<3; i++)
        P1(rt, i+3) = P2(Rt,3,i);
}

// Convert a transformation representation from Rt to rt. This is mostly a
// convenience functions since 99% of the work is done by mrcal_R_from_r().
void mrcal_Rt_from_rt_full(// output
                           double* Rt,      // (4,3) array
                           int Rt_stride0,  // in bytes. <= 0 means "contiguous"
                           int Rt_stride1,  // in bytes. <= 0 means "contiguous"
                           double* J_r,     // (3,3,3) array. Gradient. May be NULL
                           // No J_t. It's just the identity
                           int J_r_stride0, // in bytes. <= 0 means "contiguous"
                           int J_r_stride1, // in bytes. <= 0 means "contiguous"
                           int J_r_stride2, // in bytes. <= 0 means "contiguous"

                           // input
                           const double* rt, // (6,) vector
                           int rt_stride0    // in bytes. <= 0 means "contiguous"
                           )
{
    mrcal_R_from_r_full(Rt,  Rt_stride0,  Rt_stride1,
                        J_r, J_r_stride0, J_r_stride1, J_r_stride2,
                        rt,  rt_stride0);

    init_stride_1D(rt,  6);
    // init_stride_3D(J_r, 3,3,3);
    init_stride_2D(Rt,  4,3);

    for(int i=0; i<3; i++)
        P2(Rt,3,i) = P1(rt,i+3);
}

// Invert an Rt transformation
//
// b = Ra + t  -> a = R'b - R't
void mrcal_invert_Rt_full( // output
                          double* Rt_out,      // (4,3) array
                          int Rt_out_stride0,  // in bytes. <= 0 means "contiguous"
                          int Rt_out_stride1,  // in bytes. <= 0 means "contiguous"

                          // input
                          const double* Rt_in, // (4,3) array
                          int Rt_in_stride0,   // in bytes. <= 0 means "contiguous"
                          int Rt_in_stride1    // in bytes. <= 0 means "contiguous"
                           )
{
    init_stride_2D(Rt_out, 4,3);
    init_stride_2D(Rt_in,  4,3);

    // transpose(R). Extra stuff to make in-place operations work
    for(int i=0; i<3; i++)
        P2(Rt_out,i,i) = P2(Rt_in,i,i);
    for(int i=0; i<3; i++)
        for(int j=i+1; j<3; j++)
        {
            double tmp = P2(Rt_in,i,j);
            P2(Rt_out,i,j) = P2(Rt_in,j,i);
            P2(Rt_out,j,i) = tmp;
        }

    // -transpose(R)*t
    mul_vec3_gen33t_vout_scaled_full(&P2(Rt_out,3,0), Rt_out_stride1,
                                     &P2(Rt_in, 3,0), Rt_in_stride1,
                                     Rt_out, Rt_out_stride0, Rt_out_stride1,
                                     -1.0);
}

// Invert an rt transformation
//
// b = rotate(a) + t  -> a = invrotate(b) - invrotate(t)
//
// drout_drin is not returned: it is always -I
// drout_dtin is not returned: it is always 0
void mrcal_invert_rt_full( // output
                          double* rt_out,          // (6,) array
                          int rt_out_stride0,      // in bytes. <= 0 means "contiguous"
                          double* dtout_drin,      // (3,3) array
                          int dtout_drin_stride0,  // in bytes. <= 0 means "contiguous"
                          int dtout_drin_stride1,  // in bytes. <= 0 means "contiguous"
                          double* dtout_dtin,      // (3,3) array
                          int dtout_dtin_stride0,  // in bytes. <= 0 means "contiguous"
                          int dtout_dtin_stride1,  // in bytes. <= 0 means "contiguous"

                          // input
                          const double* rt_in,     // (6,) array
                          int rt_in_stride0        // in bytes. <= 0 means "contiguous"
                           )
{
    init_stride_1D(rt_out, 6);
    // init_stride_2D(dtout_drin, 3,3);
    init_stride_2D(dtout_dtin, 3,3);
    init_stride_1D(rt_in,  6);

    // r uses an angle-axis representation, so to undo a rotation r, I can apply
    // a rotation -r (same axis, equal and opposite angle)
    for(int i=0; i<3; i++)
        P1(rt_out,i) = -P1(rt_in,i);

    mrcal_rotate_point_r_full( &P1(rt_out,3), rt_out_stride0,
                               dtout_drin, dtout_drin_stride0, dtout_drin_stride1,
                               dtout_dtin, dtout_dtin_stride0, dtout_dtin_stride1,

                               // input
                               rt_out, rt_out_stride0,
                               &P1(rt_in,3), rt_in_stride0,
                               false);
    for(int i=0; i<3; i++)
        P1(rt_out,3+i) *= -1.;

    if(dtout_dtin)
        for(int i=0; i<3; i++)
            for(int j=0; j<3; j++)
                P2(dtout_dtin,i,j) *= -1.;
}


// Compose two Rt transformations
//   R0*(R1*x + t1) + t0 =
//   (R0*R1)*x + R0*t1+t0
void mrcal_compose_Rt_full( // output
                           double* Rt_out,      // (4,3) array
                           int Rt_out_stride0,  // in bytes. <= 0 means "contiguous"
                           int Rt_out_stride1,  // in bytes. <= 0 means "contiguous"

                           // input
                           const double* Rt_0,  // (4,3) array
                           int Rt_0_stride0,    // in bytes. <= 0 means "contiguous"
                           int Rt_0_stride1,    // in bytes. <= 0 means "contiguous"
                           const double* Rt_1,  // (4,3) array
                           int Rt_1_stride0,    // in bytes. <= 0 means "contiguous"
                           int Rt_1_stride1,    // in bytes. <= 0 means "contiguous"
                           bool inverted0,
                           bool inverted1)
{
    init_stride_2D(Rt_out, 4,3);
    init_stride_2D(Rt_0,   4,3);
    init_stride_2D(Rt_1,   4,3);


    /*
      I have 4 cases based on the values of inverted0,inverted1. Nominally we have:

         R0 R1 x + R0 t1 + t0

      -> R01 = R0 R1
         t01 = R0 t1 + t0

      If we invert anything we use the inverted transform for r,t:

         r x + t = y -> x = Rt y - Rt t
      -> r becomes Rt, t becomes -Rt t

      So
      inverted0:
         R01 = R0t R1
         t01 = R0t t1 - R0t t0
             = R0t (t1-t0)

      inverted1:
         R01 = R0 R1t
         t01 = -R0 R1t t1 + t0

      inverted01:
         R01 = R0t R1t
         t01 = -R0t R1t t1 - R0t t0
    */

    if(!inverted0 && !inverted1)
    {
        // R01 = R0 R1
        // t01 = R0 t1 + t0

        // for in-place operation
        const double t0[] = { P2(Rt_0,3,0),
                              P2(Rt_0,3,1),
                              P2(Rt_0,3,2) };

        // t <- R0*t1
        mul_vec3_gen33t_vout_full(&P2(Rt_out,3,0), Rt_out_stride1,
                                  &P2(Rt_1,  3,0), Rt_1_stride1,
                                  Rt_0, Rt_0_stride0, Rt_0_stride1);
        // R <- R0*R1
        mul_gen33_gen33_vout_full( Rt_out, Rt_out_stride0, Rt_out_stride1,
                                   Rt_0,   Rt_0_stride0,   Rt_0_stride1,
                                   Rt_1,   Rt_1_stride0,   Rt_1_stride1 );
        // t <- R0*t1+t0
        for(int i=0; i<3; i++)
            P2(Rt_out,3,i) += t0[i];
    }
    else if(inverted0 && !inverted1)
    {
        // R01 = R0t R1
        // t01 = R0t t1 - R0t t0
        //     = R0t (t1-t0)
        const double t10[] = { P2(Rt_1,3,0) - P2(Rt_0,3,0),
                               P2(Rt_1,3,1) - P2(Rt_0,3,1),
                               P2(Rt_1,3,2) - P2(Rt_0,3,2) };

        // t <- R0t*(t1-t0)
        mul_vec3_gen33_vout_full(&P2(Rt_out,3,0), Rt_out_stride1,
                                 t10, sizeof(t10[0]),
                                 Rt_0, Rt_0_stride0, Rt_0_stride1);
        // R <- R0t*R1
        mul_gen33t_gen33_vout_full( Rt_out, Rt_out_stride0, Rt_out_stride1,
                                    Rt_0,   Rt_0_stride0,   Rt_0_stride1,
                                    Rt_1,   Rt_1_stride0,   Rt_1_stride1 );
    }
    else if(!inverted0 && inverted1)
    {
        // R01 = R0 R1t
        // t01 = -R0 R1t t1 + t0

        // for in-place operation
        const double t0[] = { P2(Rt_0,3,0),
                              P2(Rt_0,3,1),
                              P2(Rt_0,3,2) };

        // R <- R0*R1t
        mul_gen33_gen33t_vout_full( Rt_out, Rt_out_stride0, Rt_out_stride1,
                                    Rt_0,   Rt_0_stride0,   Rt_0_stride1,
                                    Rt_1,   Rt_1_stride0,   Rt_1_stride1 );

        // t01 <- R0 R1t t1
        mul_vec3_gen33t_vout_full(&P2(Rt_out,3,0), Rt_out_stride1,
                                  &P2(Rt_1,  3,0), Rt_1_stride1,
                                  &P2(Rt_out,0,0), Rt_out_stride0, Rt_out_stride1);

        // t01 <- -R0 R1t t1 + t0
        for(int i=0; i<3; i++)
            P2(Rt_out,3,i) = -P2(Rt_out,3,i) + t0[i];
    }
    else
    {
        // R01 = R0t R1t
        // t01 = -R0t R1t t1 - R0t t0
        const double R0t_t0[3];
        mul_vec3_gen33_vout_full(R0t_t0, sizeof(R0t_t0[0]),
                                 &P2(Rt_0,  3,0), Rt_0_stride1,
                                 &P2(Rt_0,0,0), Rt_0_stride0, Rt_0_stride1);

        // R <- R0t*R1t
        mul_gen33t_gen33t_vout_full( Rt_out, Rt_out_stride0, Rt_out_stride1,
                                     Rt_0,   Rt_0_stride0,   Rt_0_stride1,
                                     Rt_1,   Rt_1_stride0,   Rt_1_stride1 );

        // t01 <- R0t R1t t1
        mul_vec3_gen33t_vout_full(&P2(Rt_out,3,0), Rt_out_stride1,
                                  &P2(Rt_1,  3,0), Rt_1_stride1,
                                  &P2(Rt_out,0,0), Rt_out_stride0, Rt_out_stride1);

        // t01 <- -R0t R1t t1 - R0t t0
        for(int i=0; i<3; i++)
            P2(Rt_out,3,i) = -P2(Rt_out,3,i) - R0t_t0[i];
    }
}

// Compose two rt transformations. It is assumed that we're getting no gradients
// at all or we're getting ALL the gradients: only dr_r0 is checked for NULL
//
// dr_dt0 is not returned: it is always 0
// dr_dt1 is not returned: it is always 0
void mrcal_compose_rt_full( // output
                           double* rt_out,       // (6,) array
                           int rt_out_stride0,   // in bytes. <= 0 means "contiguous"
                           double* dr_r0,        // (3,3) array; may be NULL
                           int dr_r0_stride0,    // in bytes. <= 0 means "contiguous"
                           int dr_r0_stride1,    // in bytes. <= 0 means "contiguous"
                           double* dr_r1,        // (3,3) array; may be NULL
                           int dr_r1_stride0,    // in bytes. <= 0 means "contiguous"
                           int dr_r1_stride1,    // in bytes. <= 0 means "contiguous"
                           double* dt_r0,        // (3,3) array; may be NULL
                           int dt_r0_stride0,    // in bytes. <= 0 means "contiguous"
                           int dt_r0_stride1,    // in bytes. <= 0 means "contiguous"
                           double* dt_r1,        // (3,3) array; may be NULL
                           int dt_r1_stride0,    // in bytes. <= 0 means "contiguous"
                           int dt_r1_stride1,    // in bytes. <= 0 means "contiguous"
                           double* dt_t0,        // (3,3) array; may be NULL
                           int dt_t0_stride0,    // in bytes. <= 0 means "contiguous"
                           int dt_t0_stride1,    // in bytes. <= 0 means "contiguous"
                           double* dt_t1,        // (3,3) array; may be NULL
                           int dt_t1_stride0,    // in bytes. <= 0 means "contiguous"
                           int dt_t1_stride1,    // in bytes. <= 0 means "contiguous"

                           // input
                           const double* rt_0,   // (6,) array
                           int rt_0_stride0,     // in bytes. <= 0 means "contiguous"
                           const double* rt_1,   // (6,) array
                           int rt_1_stride0,      // in bytes. <= 0 means "contiguous"
                           bool inverted0,
                           bool inverted1)
{
    init_stride_1D(rt_out, 6);
    init_stride_2D(dr_r0,  3,3);
    init_stride_2D(dr_r1,  3,3);
    init_stride_2D(dt_r0,  3,3);
    init_stride_2D(dt_r1,  3,3);
    init_stride_2D(dt_t0,  3,3);
    init_stride_2D(dt_t1,  3,3);
    init_stride_1D(rt_0,   6);
    init_stride_1D(rt_1,   6);

    /*
      I have 4 cases based on the values of inverted0,inverted1. Nominally we have:

         r0 r1 x + r0 t1 + t0

      -> r01 = r0 r1
         t01 = r0 t1 + t0

      If we invert anything we use the inverted transform for r,t:

         r x + t = y -> x = rt y - rt t
      -> r becomes rt, t becomes -rt t

      So
      inverted0:
         r01 = r0t r1
         t01 = r0t t1 - r0t t0

      inverted1:
         r01 = r0 r1t
         t01 = -r0 r1t t1 + t0

      inverted01:
         r01 = r0t r1t
         t01 = -r0t r1t t1 - r0t t0

      All the r stuff (inversions, gradients) is handled by
      mrcal_compose_r_full(). For the t I have custom logic in this function
    */

    // to make in-place operation work
    double rt0[6];
    double rt1[6];
    for(int i=0; i<6; i++) rt0[i] = P1(rt_0, i);
    for(int i=0; i<6; i++) rt1[i] = P1(rt_1, i);

    // Compute r01
    mrcal_compose_r_full( rt_out, rt_out_stride0,
                          dr_r0, dr_r0_stride0, dr_r0_stride1,
                          dr_r1, dr_r1_stride0, dr_r1_stride1,

                          rt_0, rt_0_stride0,
                          rt_1, rt_1_stride0,
                          inverted0, inverted1);


    if(!inverted0 && !inverted1)
    {
        // t01 <- r0 t1 + t0
        mrcal_rotate_point_r_full( &P1(rt_out,3), rt_out_stride0,
                                   dt_r0, dt_r0_stride0, dt_r0_stride1,
                                   dt_t1, dt_t1_stride0, dt_t1_stride1,

                                   rt0, -1,
                                   &P1(rt_1,3), rt_1_stride0,

                                   false );

        for(int i=0; i<3; i++)
            P1(rt_out,3+i) += rt0[3+i];
        // dt01/dt0 = I
        if(dt_t0 != NULL)
            for(int i=0; i<3; i++)
                for(int j=0; j<3; j++)
                    P2(dt_t0,i,j) = (i==j) ? 1. : 0.;

        // dt01/dr1 = 0
        if(dt_r1 != NULL)
            for(int i=0; i<3; i++)
                for(int j=0; j<3; j++)
                    P2(dt_r1,i,j) = 0.;
    }
    else if(inverted0 && !inverted1)
    {
        // t01 <- r0t t1 - r0t t0
        //      = r0t (t1-t0)
        double t10[3] = { rt1[0+3] - rt0[0+3],
                          rt1[1+3] - rt0[1+3],
                          rt1[2+3] - rt0[2+3] };
        mrcal_rotate_point_r_full( &P1(rt_out,3), rt_out_stride0,
                                   dt_r0, dt_r0_stride0, dt_r0_stride1,
                                   dt_t1, dt_t1_stride0, dt_t1_stride1,

                                   rt0, -1,
                                   t10, -1,

                                   true );

        // dt01/dr1 = 0
        if(dt_r1 != NULL)
            for(int i=0; i<3; i++)
                for(int j=0; j<3; j++)
                    P2(dt_r1,i,j) = 0.;

        // dt01/dt0 = -dt01/dt1
        if(dt_t0 != NULL)
            for(int i=0; i<3; i++)
                for(int j=0; j<3; j++)
                    P2(dt_t0,i,j) = -P2(dt_t1,i,j);
    }
    else if(!inverted0 && inverted1)
    {
        // t01 <- -r0 r1t t1 + t0

        // let p = -r1t t1
        double p[3];
        double dp_r1[9];
        double dp_t1[9];
        mrcal_rotate_point_r_full( p, -1,
                                   dp_r1, -1, -1,
                                   dp_t1, -1, -1,

                                   rt1, -1,
                                   &rt1[3], -1,

                                   true );
        for(int i=0; i<3; i++)
            p[i] *= -1;
        for(int i=0; i<9; i++)
        {
            dp_r1[i] *= -1;
            dp_t1[i] *= -1;
        }

        // t01 <- r0 p = -r0 r1t t1
        double dt_p[9];
        mrcal_rotate_point_r_full( &P1(rt_out,3), rt_out_stride0,
                                   dt_r0, dt_r0_stride0, dt_r0_stride1,
                                   dt_p, -1, -1,

                                   rt0, -1,
                                   p, -1,

                                   false );

        if(dt_r1 != NULL)
            mul_gen33_gen33_vout_full(&P2(dt_r1,0,0), dt_r1_stride0, dt_r1_stride1,

                                      // input
                                      dt_p, 3*sizeof(double), sizeof(double),
                                      dp_r1,3*sizeof(double), sizeof(double));
        if(dt_t1 != NULL)
            mul_gen33_gen33_vout_full(&P2(dt_t1,0,0), dt_t1_stride0, dt_t1_stride1,

                                      // input
                                      dt_p, 3*sizeof(double), sizeof(double),
                                      dp_t1,3*sizeof(double), sizeof(double));

        for(int i=0; i<3; i++)
            P1(rt_out,3+i) += rt0[3+i];
        // dt01/dt0 = I
        if(dt_t0 != NULL)
            for(int i=0; i<3; i++)
                for(int j=0; j<3; j++)
                    P2(dt_t0,i,j) = (i==j) ? 1. : 0.;
    }
    else
    {
        // t01 <- -r0t r1t t1 - r0t t0
        //      = r0t (-r1t t1 - t0)

        // let p = -r1t t1
        double p[3];
        double dp_r1[9];
        double dp_t1[9];
        mrcal_rotate_point_r_full( p, -1,
                                   dp_r1, -1, -1,
                                   dp_t1, -1, -1,

                                   rt1, -1,
                                   &rt1[3], -1,

                                   true );
        for(int i=0; i<3; i++)
            p[i] *= -1;
        for(int i=0; i<9; i++)
        {
            dp_r1[i] *= -1;
            dp_t1[i] *= -1;
        }

        // p = -r1t t1 - t0
        for(int i=0; i<3; i++)
            p[i] -= rt0[3+i];


        // t01 <- r0 p = -r0 r1t t1
        double dt_p[9];
        mrcal_rotate_point_r_full( &P1(rt_out,3), rt_out_stride0,
                                   dt_r0, dt_r0_stride0, dt_r0_stride1,
                                   dt_p, -1, -1,

                                   rt0, -1,
                                   p, -1,

                                   true );

        if(dt_r1 != NULL)
            mul_gen33_gen33_vout_full(&P2(dt_r1,0,0), dt_r1_stride0, dt_r1_stride1,

                                      // input
                                      dt_p, 3*sizeof(double), sizeof(double),
                                      dp_r1,3*sizeof(double), sizeof(double));
        if(dt_t1 != NULL)
            mul_gen33_gen33_vout_full(&P2(dt_t1,0,0), dt_t1_stride0, dt_t1_stride1,

                                      // input
                                      dt_p, 3*sizeof(double), sizeof(double),
                                      dp_t1,3*sizeof(double), sizeof(double));

        // dt01/dt0 = -dt/dp
        if(dt_t0 != NULL)
            for(int i=0; i<3; i++)
                for(int j=0; j<3; j++)
                    P2(dt_t0,i,j) = -dt_p[3*i+j];
    }
}

void mrcal_compose_r_tinyr0_gradientr0_full( // output
                           double* dr_dr0,      // (3,3) array; may be NULL
                           int dr_dr0_stride0,  // in bytes. <= 0 means "contiguous"
                           int dr_dr0_stride1,  // in bytes. <= 0 means "contiguous"

                           // input
                           const double* r_1,   // (3,) array
                           int r_1_stride0      // in bytes. <= 0 means "contiguous"
                           )
{
    init_stride_2D(dr_dr0, 3, 3);
    init_stride_1D(r_1, 3);

    // All the comments and logic appear in compose_r_core() in
    // poseutils-uses-autodiff.cc. This is a special-case function with
    // manually-computed gradients (because I want to make sure they're fast)
    double norm2_r1 = 0.0;
    for(int i=0; i<3; i++)
        norm2_r1 += P1(r_1,i)*P1(r_1,i);

    if(norm2_r1 < 2e-8*2e-8)
    {
        // Both vectors are tiny, so I have r01 = r0 + r1, and the gradient is
        // an identity matrix
        for(int i=0; i<3; i++)
            for(int j=0; j<3; j++)
                P2(dr_dr0,i,j) = i==j ? 1.0 : 0.0;
        return;
    }

    // I'm computing
    //   R(angle=gamma, axis=n) =
    //   compose( R(angle=alpha, axis=l), R(angle=beta, axis=m) )
    // where
    //   A = alpha/2
    //   B = beta /2

    // I have
    // r01 = r1
    //     - inner(r0,r1) (B/tanB - 1) / 4B^2 r1
    //     + B/tanB r0
    //     + cross(r0,r1) / 2
    //
    // I differentiate:
    //
    //   dr01/dr0 =
    //     - outer(r1,r1) (B/tanB - 1) / 4B^2
    //     + B/tanB I
    //     - skew_symmetric(r1) / 2
    double B    = sqrt(norm2_r1) / 2.;
    double B_over_tanB = B / tan(B);

    for(int i=0; i<3; i++)
        for(int j=0; j<3; j++)
            P2(dr_dr0,i,j) =
                - P1(r_1,i)*P1(r_1,j) * (B_over_tanB - 1.) / (4.*B*B);
    for(int i=0; i<3; i++)
        P2(dr_dr0,i,i) +=
            B_over_tanB;

    P2(dr_dr0,0,1) -= -P1(r_1,2)/2.;
    P2(dr_dr0,0,2) -=  P1(r_1,1)/2.;
    P2(dr_dr0,1,0) -=  P1(r_1,2)/2.;
    P2(dr_dr0,1,2) -= -P1(r_1,0)/2.;
    P2(dr_dr0,2,0) -= -P1(r_1,1)/2.;
    P2(dr_dr0,2,1) -=  P1(r_1,0)/2.;
}

void mrcal_compose_r_tinyr1_gradientr1_full( // output
                           double* dr_dr1,      // (3,3) array; may be NULL
                           int dr_dr1_stride0,  // in bytes. <= 0 means "contiguous"
                           int dr_dr1_stride1,  // in bytes. <= 0 means "contiguous"

                           // input
                           const double* r_0,   // (3,) array
                           int r_0_stride0      // in bytes. <= 0 means "contiguous"
                           )
{
    init_stride_2D(dr_dr1, 3, 3);
    init_stride_1D(r_0, 3);

    // All the comments and logic appear in compose_r_core() in
    // poseutils-uses-autodiff.cc. This is a special-case function with
    // manually-computed gradients (because I want to make sure they're fast)
    double norm2_r0 = 0.0;
    for(int i=0; i<3; i++)
        norm2_r0 += P1(r_0,i)*P1(r_0,i);

    if(norm2_r0 < 2e-8*2e-8)
    {
        // Both vectors are tiny, so I have r01 = r0 + r1, and the gradient is
        // an identity matrix
        for(int i=0; i<3; i++)
            for(int j=0; j<3; j++)
                P2(dr_dr1,i,j) = i==j ? 1.0 : 0.0;
        return;
    }

    // I'm computing
    //   R(angle=gamma, axis=n) =
    //   compose( R(angle=alpha, axis=l), R(angle=beta, axis=m) )
    // where
    //   A = alpha/2
    //   B = beta /2

    // I have
    // r01 = r0
    //     - inner(r0,r1) (A/tanA - 1) / 4A^2 r0
    //     + A/tanA r1
    //     + cross(r0,r1) / 2
    //
    // I differentiate:
    //
    //   dr01/dr1 =
    //     - outer(r0,r0) (A/tanA - 1) / 4A^2
    //     + A/tanA I
    //     + skew_symmetric(r0) / 2
    double A    = sqrt(norm2_r0) / 2.;
    double A_over_tanA = A / tan(A);

    for(int i=0; i<3; i++)
        for(int j=0; j<3; j++)
            P2(dr_dr1,i,j) =
                - P1(r_0,i)*P1(r_0,j) * (A_over_tanA - 1.) / (4.*A*A);
    for(int i=0; i<3; i++)
        P2(dr_dr1,i,i) +=
            A_over_tanA;

    P2(dr_dr1,0,1) += -P1(r_0,2)/2.;
    P2(dr_dr1,0,2) +=  P1(r_0,1)/2.;
    P2(dr_dr1,1,0) +=  P1(r_0,2)/2.;
    P2(dr_dr1,1,2) += -P1(r_0,0)/2.;
    P2(dr_dr1,2,0) += -P1(r_0,1)/2.;
    P2(dr_dr1,2,1) +=  P1(r_0,0)/2.;
}


void mrcal_r_from_R_full( // output
                         double* r,       // (3,) vector
                         int r_stride0,   // in bytes. <= 0 means "contiguous"
                         double* J,       // (3,3,3) array. Gradient. May be NULL
                         int J_stride0,   // in bytes. <= 0 means "contiguous"
                         int J_stride1,   // in bytes. <= 0 means "contiguous"
                         int J_stride2,   // in bytes. <= 0 means "contiguous"

                         // input
                         const double* R, // (3,3) array
                         int R_stride0,   // in bytes. <= 0 means "contiguous"
                         int R_stride1    // in bytes. <= 0 means "contiguous"
                          )
{
    init_stride_1D(r, 3);
    init_stride_3D(J, 3,3,3);
    init_stride_2D(R, 3,3);


    // Looking at https://en.wikipedia.org/wiki/Rodrigues%27_rotation_formula the
    // Rodrigues rotation formula for th rad rotation around unit axis v is
    //
    //   R = I + sin(th) V + (1 - cos(th)) V^2
    //
    // where V = skew_symmetric(v):
    //
    //          [  0 -v2  v1]
    //   V(v) = [ v2   0 -v0]
    //          [-v1  v0   0]
    //
    // and
    //
    //   v(V) = [-V12, V02, -V01]
    //
    // I, V^2 are symmetric; V is anti-symmetric. So R - Rt = 2 sin(th) V
    //
    // Let's define
    //
    //       [  R21 - R12 ]
    //   u = [ -R20 + R02 ] = v(R) - v(Rt)
    //       [  R10 - R01 ]
    //
    // From the above equations we see that u = 2 sin(th) v. So I compute the
    // axis v = u/mag(u). I want th in [0,pi] so I can't compute th from u since
    // there's an ambiguity: sin(th) = sin(pi-th). So instead, I compute th from
    // trace(R) = 1 + 2*cos(th)
    //
    // There's an extra wrinkle here. Computing the axis from mag(u) only works
    // if sin(th) != 0. So there are two special cases that must be handled: th
    // ~ 0 and th ~ 180. If th ~ 0, then the axis doesn't matter and r ~ 0. If
    // th ~ 180 then the axis DOES matter, and we need special logic.
    const double tr = P2(R,0,0) + P2(R,1,1) + P2(R,2,2);
    const double u[3] =
        {
            P2(R,2,1) - P2(R,1,2),
            P2(R,0,2) - P2(R,2,0),
            P2(R,1,0) - P2(R,0,1)
        };

    const double costh = (tr - 1.) / 2.;

    // In radians. If my angle is this close to 0, I use the special-case paths
    const double eps = 1e-8;

    // near 0 we have norm2u ~ 4 th^2
    const double norm2u =
        u[0]*u[0] +
        u[1]*u[1] +
        u[2]*u[2];
    if(// both conditions to handle roundoff error
       norm2u > 4. * eps*eps &&
       1. - fabs(costh) > eps*eps/2. )
    {
        // normal path

        // I have sin>0, so I'm in the first two quadrants. I can thus compute
        // th=acos(th), but this is inaccurate if th ~ 0 or th ~ pi, so I pick
        // the best path. This is essentially atan2

        const double sinth = sqrt(norm2u)/2;
        const double th =
            (sinth > sqrt(2.)/2.) ? acos(costh) :
            ( costh > 0 ?
              asin(sinth) :
              (M_PI - asin(sinth)) );

        for(int i=0; i<3; i++)
            P1(r,i) = u[i]/sqrt(norm2u) * th;
    }
    else if(costh > 0)
    {
        // small th. Can't divide by it. But I can look at the limit.
        //
        // u / (2 sinth)*th = u/2 *th/sinth ~ u/2
        for(int i=0; i<3; i++)
            P1(r,i) = u[i] / 2.;
    }
    else
    {
        // cos(th) < 0. So th ~ +-180 = +-180 + dth where dth ~ 0. And I have
        //
        //   R = I + sin(th)  V + (1 - cos(th) ) V^2
        //     = I + sin(+-180 + dth) V + (1 - cos(+-180 + dth)) V^2
        //     = I - sin(dth) V + (1 + cos(dth)) V^2
        //     ~ I - dth V + 2 V^2
        //
        // Once again, I, V^2 are symmetric; V is anti-symmetric. So
        //
        //   R - Rt = 2 sin(th) V
        //          = -2 sin(dth) V
        //          = -2 dth V
        // I want
        //
        //   r = th v
        //     = dth v +- 180deg v
        //
        //   r = v((R - Rt) / -2.) +- 180deg v
        //     = u/-2 +- 180deg v
        //
        // Now we need v; let's look at the symmetric parts:
        //
        //   R + Rt = 2 I + 4 V^2
        //-> V^2 = (R + Rt)/4 - I/2
        //
        //          [  0 -v2  v1]
        //   V(v) = [ v2   0 -v0]
        //          [-v1  v0   0]
        //
        //            [ -(v1^2+v2^2)       v0 v1         v0 v2     ]
        //   V^2(v) = [      v0 v1      -(v0^2+v2^2)     v1 v2     ]
        //            [      v0 v2         v1 v2      -(v0^2+v1^2) ]
        //
        // I want v be a unit vector. Can I assume that? From above:
        //
        //   tr(V^2) = -2 norm2(v)
        //
        // So I want to assume that tr(V^2) = -2. The earlier expression had
        //
        //   R + Rt = 2 I + 4 V^2
        //
        // -> tr(R + Rt) = tr(2 I + 4 V^2)
        // -> tr(V^2) = (tr(R + Rt) - 6)/4
        //            = (2 tr(R) - 6)/4
        //            = (1 + 2*cos(th) - 3)/2
        //            = -1 + cos(th)
        //
        // Near th ~ 180deg, this is -2 as required. So we can assume that
        // mag(v)=1:
        //
        //            [ v0^2 - 1    v0 v1       v0 v2    ]
        //   V^2(v) = [ v0 v1       v1^2 - 1    v1 v2    ]
        //            [ v0 v2       v1 v2       v2^2 - 1 ]
        //
        // So
        //
        //   v^2 = 1 + diag(V^2)
        //       = 1 + 2 diag(R)/4 - I/2
        //       = 1 + diag(R)/2 - 1/2
        //       = (1 + diag(R))/2
        for(int i=0; i<3; i++)
            P1(r,i) = u[i] / -2.;

        // Now r += pi v
        const double vsq[3] =
            {
                (P2(R,0,0) + 1.) /2.,
                (P2(R,1,1) + 1.) /2.,
                (P2(R,2,2) + 1.) /2.
            };
        // This is abs(v) initially
        double v[3] = {};
        for(int i=0; i<3; i++)
            if(vsq[i] > 0.0)
                v[i] = sqrt(vsq[i]);
            else
            {
                // round-off sets this at 0; it's already there. Leave it
            }

        // Now I need to get the sign of each individual value. Overall, the
        // sign of the vector v doesn't matter. I set the sign of a notably
        // non-zero abs(v[i]) to >0, and go from there.

        // threshold can be anything notably > 0. I'd like to encourage the same
        // branch to always be taken, so I set the thresholds relatively low
        if(     v[0] > 0.1)
        {
            // I leave v[0]>0.
            //   V^2[0,1] must have the same sign as v1
            //   V^2[0,2] must have the same sign as v2
            if( (P2(R,0,1) + P2(R,1,0)) < 0 ) v[1] *= -1.;
            if( (P2(R,0,2) + P2(R,2,0)) < 0 ) v[2] *= -1.;
        }
        else if(v[1] > 0.1)
        {
            // I leave v[1]>0.
            //   V^2[1,0] must have the same sign as v0
            //   V^2[1,2] must have the same sign as v2
            if( (P2(R,1,0) + P2(R,0,1)) < 0 ) v[0] *= -1.;
            if( (P2(R,1,2) + P2(R,2,1)) < 0 ) v[2] *= -1.;
        }
        else
        {
            // I leave v[2]>0.
            //   V^2[2,0] must have the same sign as v0
            //   V^2[2,1] must have the same sign as v1
            if( (P2(R,2,0) + P2(R,0,2)) < 0 ) v[0] *= -1.;
            if( (P2(R,2,1) + P2(R,1,2)) < 0 ) v[1] *= -1.;
        }

        for(int i=0; i<3; i++)
            P1(r,i) += v[i] * M_PI;
    }


    if(J != NULL)
    {
        // Not all (3,3) matrices R are valid rotations, and I make sure to evaluate
        // the gradient in the subspace defined by the opposite operation: R_from_r
        //
        // I'm assuming a flattened R.shape = (9,) everywhere here
        //
        // - I compute r = r_from_R(R)
        //
        // - R',dR/dr = R_from_r(r, get_gradients = True)
        //   R' should match R. This method assumes that.
        //
        // - We have
        //     dR = dR/dr dr
        //     dr = dr/dR dR
        //   so
        //     dr/dR dR/dr = I
        //
        // - dR/dr has shape (9,3). In response to perturbations in r, R moves in a
        //   rank-3 subspace: this is the local subspace of valid rotation
        //   matrices. The dr/dR we seek should be limited to that subspace as
        //   well. So dr/dR = M (dR/dr)' for some 3x3 matrix M
        //
        // - Combining those two I get
        //     dr/dR       = M (dR/dr)'
        //     dr/dR dR/dr = M (dR/dr)' dR/dr
        //     I           = M (dR/dr)' dR/dr
        //   ->
        //     M = inv( (dR/dr)' dR/dr )
        //   ->
        //     dr/dR = M (dR/dr)'
        //           = inv( (dR/dr)' dR/dr ) (dR/dr)'
        //           = pinv(dR/dr)

        // share memory
        union
        {
            // Unused. The tests make sure this is the same as R
            double R_roundtrip[3*3];
            double det_inv_dRflat_drT__dRflat_dr[6];
        } m;

        double dRflat_dr[9*3]; // inverse gradient

        mrcal_R_from_r_full( // outputs
                             m.R_roundtrip,0,0,
                             dRflat_dr,  0,0,0,

                             // input
                             r,r_stride0 );

        ////// transpose(dRflat_dr) * dRflat_dr
        // 3x3 symmetric matrix; packed,dense storage; row-first
        double dRflat_drT__dRflat_dr[6] = {};
        int i_result = 0;
        for(int i=0; i<3; i++)
            for(int j=i;j<3;j++)
            {
                for(int k=0; k<9; k++)
                    dRflat_drT__dRflat_dr[i_result] +=
                        dRflat_dr[k*3 + i]*
                        dRflat_dr[k*3 + j];
                i_result++;
            }

        ////// inv( transpose(dRflat_dr) * dRflat_dr )
        // 3x3 symmetric matrix; packed,dense storage; row-first
        double inv_det = 1./cofactors_sym3(dRflat_drT__dRflat_dr, m.det_inv_dRflat_drT__dRflat_dr);

        ////// inv( transpose(dRflat_dr) * dRflat_dr ) transpose(dRflat_dr)
        for(int i=0; i<3; i++)
            for(int j=0; j<3; j++)
            {
                // computing dr/dR[i,j]
                double dr[3] = {};
                mul_vec3_sym33_vout_scaled( &dRflat_dr[3*(j + 3*i)], m.det_inv_dRflat_drT__dRflat_dr,
                                            dr,
                                            inv_det);
                for(int k=0; k<3; k++)
                    P3(J, k,i,j) = dr[k];
            }
    }
}

// LAPACK SVD function
int dgesdd_(char* jobz,
            int* m,
            int* n,
            double*  a,
            int* lda,
            double* s,
            double* u,
            int* ldu,
            double* vt,
            int* ldvt,
            double* work,
            int* lwork,
            int* iwork,
            int* info,
            int jobz_len);

// This is functionally identical to mrcal.align_procrustes_vectors_R01(). It
// should replace that function to provide a C implementation for mrcal users
//
// This solves:
//   https://en.wikipedia.org/wiki/Orthogonal_Procrustes_problem
// See the mrcal sources for implementation details
static
bool _align_procrustes_vectors_R01(// out
                                   double* R01,
                                   // in
                                   const int N,
                                   // (N,3) arrays
                                   const double* p0,
                                   const double* p1,
                                   // (3,) array; may be NULL
                                   const double* pmean0,
                                   const double* pmean1,

                                   // (N,) array; may be NULL to use an even
                                   // weighting
                                   const double* weights)
{
    double M[9] = {};

    double _pmean0[3] = {};
    double _pmean1[3] = {};
    if(pmean0 == NULL) pmean0 = _pmean0;
    if(pmean1 == NULL) pmean1 = _pmean1;

    if(weights == NULL)
        for(int i=0; i<N; i++)
            // I compute outer(v0,v1)
            for(int j=0; j<3; j++)
                for(int k=0; k<3; k++)
                    M[j*3 + k] += (p0[i*3+j]-pmean0[j])*(p1[i*3+k]-pmean1[k]);
    else
        for(int i=0; i<N; i++)
            // I compute outer(v0,v1)
            for(int j=0; j<3; j++)
                for(int k=0; k<3; k++)
                    M[j*3 + k] += (p0[i*3+j]-pmean0[j])*(p1[i*3+k]-pmean1[k])*weights[i];


    double U[9];
    double Vt[9];
    double S[3];
    double lwork_query;
    int iwork[3*8];
    int info;

    // lapack thinks about transposed matrices. So when I give it A, it sees At.
    // It computes A = U Vt -> At = V Ut. And the results it gives back to me
    // are transposed too. So I give it At. The "U" it gives me back is actually
    // Vt and the Vt is actually U
    dgesdd_("A",
            (int[]){3}, (int[]){3},
            M, (int[]){3},
            S,
            Vt,(int[]){3},
            U, (int[]){3},
            &lwork_query,
            (int[]){-1}, // query the optimal lwork
            iwork,
            &info,
            1);
    if(info != 0)
    {
        // secret value to indicate that this is a fatal error. Needed for the
        // Python layer
        R01[0] = 1.;
        return false;
    }

    double work[(int)lwork_query];

    dgesdd_("A",
            (int[]){3}, (int[]){3},
            M, (int[]){3},
            S,
            Vt,(int[]){3},
            U, (int[]){3},
            work,
            (int[]){(int)lwork_query},
            iwork,
            &info,
            1);
    if(info != 0)
    {
        // secret value to indicate that this is a fatal error. Needed for the
        // Python layer
        R01[0] = 1.;
        return false;
    }

    // I look at the second-lowest singular value. One 0 singular value is OK
    // (the other two can uniquely define my 3D basis). But two isn't OK: the
    // basis is no longer unique
    if(S[1] < 1e-12)
    {
        // Poorly-defined problem
        //
        // secret value to indicate that this is a potentially non-fatal error.
        // Needed for the Python layer
        R01[0] = 0.;
        return false;
    }

    memset(R01, 0, 9*sizeof(R01[0]));
    for(int i=0; i<3; i++)
        for(int j=0; j<3; j++)
            for(int k=0; k<3; k++)
                // inner( U[i,:], V[j,:]
                R01[i*3 + j] += U[i*3 + k]*Vt[j + k*3];

    // det(R01) is now +1 or -1. If it's -1, then this contains a mirror, and thus
    // is not a physical rotation. I compensate by negating the least-important
    // pair of singular vectors
    const double det_R =
        R01[0]*(R01[4]*R01[8]-R01[5]*R01[7]) -
        R01[1]*(R01[3]*R01[8]-R01[5]*R01[6]) +
        R01[2]*(R01[3]*R01[7]-R01[4]*R01[6]);
    if(det_R < 0)
    {
        memset(R01, 0, 9*sizeof(R01[0]));

        for(int i=0; i<3; i++)
            for(int j=0; j<3; j++)
            {
                int k;
                for(k=0; k<2; k++)
                    R01[i*3 + j] += U[i*3 + k]*Vt[j + k*3];
                R01[i*3 + j] -= U[i*3 + k]*Vt[j + k*3];
            }
    }

    return true;
}

bool mrcal_align_procrustes_vectors_R01(// out
                                        double* R01,
                                        // in
                                        const int N,
                                        // (N,3) arrays
                                        const double* v0,
                                        const double* v1,

                                        // (N,) array; may be NULL to use an even
                                        // weighting
                                        const double* weights)
{
    return _align_procrustes_vectors_R01(R01,N,v0,v1,NULL,NULL,weights);
}

bool mrcal_align_procrustes_points_Rt01(// out
                                        double* Rt01,
                                        // in
                                        const int N,
                                        // (N,3) arrays
                                        const double* p0,
                                        const double* p1,

                                        // (N,) array; may be NULL to use an even
                                        // weighting
                                        const double* weights)
{
    double pmean0[3] = {};
    double pmean1[3] = {};

    for(int i=0; i<N; i++)
        for(int j=0; j<3; j++)
        {
            pmean0[j] += p0[i*3+j];
            pmean1[j] += p1[i*3+j];
        }
    for(int j=0; j<3; j++)
    {
        pmean0[j] /= (double)N;
        pmean1[j] /= (double)N;
    }
    if(!_align_procrustes_vectors_R01(Rt01,N,p0,p1,pmean0,pmean1,weights))
        return false;

    // t = pmean0 - R01 pmean1
    for(int i=0; i<3; i++)
    {
        Rt01[9 + i] = pmean0[i];
        for(int j=0; j<3; j++)
            Rt01[9 + i] -= Rt01[i*3 + j] * pmean1[j];
    }
    return true;
}

// Compute a non-unique rotation to map a given vector to [0,0,1]
// See docstring for mrcal.R_aligned_to_vector() for details
void mrcal_R_aligned_to_vector(// out
                               double* R,
                               // in
                               const double* v)
{
    double magv = sqrt(v[0]*v[0] +
                       v[1]*v[1] +
                       v[2]*v[2]);

    double* x = &R[0*3];
    double* y = &R[1*3];
    double* z = &R[2*3];

    for(int i=0; i<3; i++)
    {
        x[i] = 0.0;
        z[i] = v[i]/magv;
    }

    double inner_x_z = 0.;
    if(fabs(z[0]) < .9)
    {
        x[0] = 1.;
        inner_x_z = z[0];
    }
    else
    {
        x[1] = 1.;
        inner_x_z = z[1];
    }

    for(int i=0; i<3; i++)
        x[i] -= inner_x_z*z[i];

    double magx = sqrt(x[0]*x[0] +
                       x[1]*x[1] +
                       x[2]*x[2]);

    for(int i=0; i<3; i++)
        x[i] /= magx;

    // y = cross(z,x);
    y[0] = z[1]*x[2] - z[2]*x[1];
    y[1] = z[2]*x[0] - z[0]*x[2];
    y[2] = z[0]*x[1] - z[1]*x[0];
}