1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
|
// Copyright (c) 2017-2023 California Institute of Technology ("Caltech"). U.S.
// Government sponsorship acknowledged. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
// Apparently I need this in MSVC to get constants
#define _USE_MATH_DEFINES
#include <math.h>
#include <float.h>
#include "mrcal.h"
#include "minimath/minimath.h"
#include "_util.h"
// The equivalent function in Python is _rectified_resolution_python() in
// stereo.py
//
// Documentation is in the docstring of mrcal.rectified_resolution()
bool mrcal_rectified_resolution( // output and input
// > 0: use given value
// < 0: autodetect and scale
double* pixels_per_deg_az,
double* pixels_per_deg_el,
// input
const mrcal_lensmodel_t* lensmodel,
const double* intrinsics,
const mrcal_point2_t* azel_fov_deg,
const mrcal_point2_t* azel0_deg,
const double* R_cam0_rect0,
const mrcal_lensmodel_type_t rectification_model_type)
{
// Get the rectified image resolution
if( *pixels_per_deg_az < 0 ||
*pixels_per_deg_el < 0)
{
const mrcal_point2_t azel0 = {.x = azel0_deg->x * M_PI/180.,
.y = azel0_deg->y * M_PI/180. };
// I need to compute the resolution of the rectified images. I try to
// match the resolution of the cameras. I just look at camera0. If your
// two cameras are different, pass in the pixels_per_deg yourself
//
// I look at the center of the stereo field of view. There I have q =
// project(v) where v is a unit projection vector. I compute dq/dth where
// th is an angular perturbation applied to v.
double v[3];
double dv_dazel[3*2];
if(rectification_model_type == MRCAL_LENSMODEL_LATLON)
mrcal_unproject_latlon((mrcal_point3_t*)v, (mrcal_point2_t*)dv_dazel,
&azel0,
1,
(double[]){1.,1.,0.,0.});
else if(rectification_model_type == MRCAL_LENSMODEL_LONLAT)
mrcal_unproject_lonlat((mrcal_point3_t*)v, (mrcal_point2_t*)dv_dazel,
&azel0,
1,
(double[]){1.,1.,0.,0.});
else if(rectification_model_type == MRCAL_LENSMODEL_PINHOLE)
{
mrcal_point2_t q0_normalized = {.x = tan(azel0.x),
.y = tan(azel0.y)};
mrcal_unproject_pinhole((mrcal_point3_t*)v, (mrcal_point2_t*)dv_dazel,
&q0_normalized,
1,
(double[]){1.,1.,0.,0.});
// dq/dth = dtanth/dth = 1/cos^2(th)
double cos_az0 = cos(azel0.x);
double cos_el0 = cos(azel0.y);
for(int i=0; i<3; i++)
{
dv_dazel[2*i + 0] /= cos_az0*cos_az0;
dv_dazel[2*i + 1] /= cos_el0*cos_el0;
}
}
else
{
MSG("Unsupported rectification model");
return false;
}
double v0[3];
mrcal_rotate_point_R(v0, NULL,NULL,
R_cam0_rect0,
v);
// dv0_dazel = nps.matmult(R_cam0_rect0, dv_dazel)
double dv0_daz[3] = {};
double dv0_del[3] = {};
for(int j=0; j<3; j++)
for(int k=0; k<3; k++)
{
dv0_daz[j] += R_cam0_rect0[j*3+k]*dv_dazel[2*k + 0];
dv0_del[j] += R_cam0_rect0[j*3+k]*dv_dazel[2*k + 1];
}
mrcal_point2_t qdummy;
mrcal_point3_t dq_dv0[2];
// _,dq_dv0,_ = mrcal.project(v0, *model.intrinsics(), get_gradients = True)
mrcal_project(&qdummy,dq_dv0,NULL,
(const mrcal_point3_t*)v0, 1, lensmodel, intrinsics);
// More complex method that's probably not any better
//
// if False:
// // I rotate my v to a coordinate system where u = rotate(v) is [0,0,1].
// // Then u = [a,b,0] are all orthogonal to v. So du/dth = [cos, sin, 0].
// // I then have dq/dth = dq/dv dv/du [cos, sin, 0]t
// // ---> dq/dth = dq/dv dv/du[:,:2] [cos, sin]t = M [cos,sin]t
// //
// // norm2(dq/dth) = [cos,sin] MtM [cos,sin]t is then an ellipse with the
// // eigenvalues of MtM giving me the best and worst sensitivities. I can
// // use mrcal.worst_direction_stdev() to find the densest direction. But I
// // actually know the directions I care about, so I evaluate them
// // independently for the az and el directions
// Ruv = mrcal.R_aligned_to_vector(v0);
// M = nps.matmult(dq_dv0, nps.transpose(Ruv[:2,:]))
// // I pick the densest direction: highest |dq/dth|
// pixels_per_rad = mrcal.worst_direction_stdev( nps.matmult( nps.transpose(M),M) );
// dq_dazel = nps.matmult(dq_dv0, dv0_dazel)
double dq_daz[2] =
{ dq_dv0[0].x*dv0_daz[0] + dq_dv0[0].y*dv0_daz[1] + dq_dv0[0].z*dv0_daz[2],
dq_dv0[1].x*dv0_daz[0] + dq_dv0[1].y*dv0_daz[1] + dq_dv0[1].z*dv0_daz[2] };
double dq_del[2] =
{ dq_dv0[0].x*dv0_del[0] + dq_dv0[0].y*dv0_del[1] + dq_dv0[0].z*dv0_del[2],
dq_dv0[1].x*dv0_del[0] + dq_dv0[1].y*dv0_del[1] + dq_dv0[1].z*dv0_del[2] };
if(*pixels_per_deg_az < 0)
{
double dq_daz_norm2 = 0.;
for(int i=0; i<2; i++) dq_daz_norm2 += dq_daz[i]*dq_daz[i];
double pixels_per_deg_az_have = sqrt(dq_daz_norm2)*M_PI/180.;
*pixels_per_deg_az *= -pixels_per_deg_az_have;
}
if(*pixels_per_deg_el < 0)
{
double dq_del_norm2 = 0.;
for(int i=0; i<2; i++) dq_del_norm2 += dq_del[i]*dq_del[i];
double pixels_per_deg_el_have = sqrt(dq_del_norm2)*M_PI/180.;
*pixels_per_deg_el *= -pixels_per_deg_el_have;
}
}
// I now have the desired pixels_per_deg
//
// With LENSMODEL_LATLON or LENSMODEL_LONLAT we have even angular spacing, so
// q = f th + c -> dq/dth = f everywhere. I can thus compute the rectified
// image size and adjust the resolution accordingly
//
// With LENSMODEL_PINHOLE this is much more complex, so this function just
// leaves the desired pixels_per_deg as it is
if(rectification_model_type == MRCAL_LENSMODEL_LATLON ||
rectification_model_type == MRCAL_LENSMODEL_LONLAT)
{
int Naz = (int)round(azel_fov_deg->x * (*pixels_per_deg_az));
int Nel = (int)round(azel_fov_deg->y * (*pixels_per_deg_el));
*pixels_per_deg_az = (double)Naz/azel_fov_deg->x;
*pixels_per_deg_el = (double)Nel/azel_fov_deg->y;
}
return true;
}
// The equivalent function in Python is _rectified_system_python() in stereo.py
//
// Documentation is in the docstring of mrcal.rectified_system()
bool mrcal_rectified_system2(// output
unsigned int* imagersize_rectified,
double* fxycxy_rectified,
double* rt_rect0_ref,
double* baseline,
// input, output
// > 0: use given value
// < 0: autodetect and scale
double* pixels_per_deg_az,
double* pixels_per_deg_el,
// input, output
// if(..._autodetect) { the results are returned here }
mrcal_point2_t* azel_fov_deg,
mrcal_point2_t* azel0_deg,
// input
// we refuse to create a view this close to az=90 or az=-90
const double az_edge_margin_deg,
// Intrinsics used only for pixels_per_deg detection
const mrcal_lensmodel_t* lensmodel0,
const double* intrinsics0,
const double* rt_cam0_ref,
const double* rt_cam1_ref,
const mrcal_lensmodel_type_t rectification_model_type,
bool az0_deg_autodetect,
bool el0_deg_autodetect,
bool az_fov_deg_autodetect,
bool el_fov_deg_autodetect)
{
if(el0_deg_autodetect)
{
MSG("el0_deg_autodetect is not yet supported");
return false;
}
if(az_fov_deg_autodetect)
{
MSG("az_fov_deg_autodetect is not yet supported");
return false;
}
if(el_fov_deg_autodetect)
{
MSG("el_fov_deg_autodetect is not yet supported");
return false;
}
if( !(rectification_model_type == MRCAL_LENSMODEL_LATLON ||
rectification_model_type == MRCAL_LENSMODEL_PINHOLE) )
{
MSG("Unsupported rectification model '%s'. Only LENSMODEL_LATLON and LENSMODEL_PINHOLE are supported",
mrcal_lensmodel_name_unconfigured( &(mrcal_lensmodel_t){.type = rectification_model_type}));
return false;
}
const mrcal_lensmodel_metadata_t meta =
mrcal_lensmodel_metadata( lensmodel0 );
if(meta.noncentral)
{
if(lensmodel0->type == MRCAL_LENSMODEL_CAHVORE)
{
// CAHVORE is generally noncentral, but if E=0, then it is
const int Nintrinsics = mrcal_lensmodel_num_params(lensmodel0);
for(int i=Nintrinsics-3; i<Nintrinsics; i++)
if(intrinsics0[i] != 0)
{
MSG("Stereo rectification is only possible with a central projection. Please centralize your models. This is CAHVORE, so set E=0 to centralize. This will ignore all noncentral effects near the lens");
return false;
}
}
else
{
MSG("Stereo rectification is only possible with a central projection. Please centralize your models");
return false;
}
}
///// TODAY this C implementation supports MRCAL_LENSMODEL_LATLON only. This
///// isn't a design choice, I just don't want to do the extra work yet. The
///// API already is general enough to support both rectification schemes.
if( rectification_model_type != MRCAL_LENSMODEL_LATLON )
{
MSG("Today this C implementation supports MRCAL_LENSMODEL_LATLON only.");
return false;
}
if(*pixels_per_deg_az == 0)
{
MSG("pixels_per_deg_az == 0 is illegal. Must be >0 if we're trying to specify a value, or <0 to autodetect");
return false;
}
if(*pixels_per_deg_el == 0)
{
MSG("pixels_per_deg_el == 0 is illegal. Must be >0 if we're trying to specify a value, or <0 to autodetect");
return false;
}
if( azel_fov_deg->x <= 0. ||
azel_fov_deg->y <= 0.)
{
MSG("az_fov_deg, el_fov_deg must be > 0. No auto-detection implemented yet");
return false;
}
// Compute the geometry of the rectified stereo system. This is a
// rotation, centered at camera0. More or less we have axes:
//
// x: from camera0 to camera1
// y: completes the system from x,z
// z: component of the cameras' viewing direction
// normal to the baseline
double Rt_cam0_ref[4*3];
double Rt_cam1_ref[4*3];
mrcal_Rt_from_rt(Rt_cam0_ref, NULL, rt_cam0_ref);
mrcal_Rt_from_rt(Rt_cam1_ref, NULL, rt_cam1_ref);
double Rt01[4*3];
double Rt_ref_cam1[4*3];
mrcal_invert_Rt(Rt_ref_cam1,Rt_cam1_ref);
mrcal_compose_Rt(Rt01, Rt_cam0_ref, Rt_ref_cam1);
// Rotation relating camera0 coords to the rectified camera coords. I fill in
// each row separately
double Rt_rect0_cam0[4*3] = {};
double* R_rect0_cam0 = Rt_rect0_cam0;
// Axes of the rectified system, in the cam0 coord system
double* right = &R_rect0_cam0[0*3 + 0];
double* down = &R_rect0_cam0[1*3 + 0];
double* forward = &R_rect0_cam0[2*3 + 0];
// "right" of the rectified coord system: towards the origin of camera1 from
// camera0, in camera0 coords
for(int i=0; i<3; i++) right[i] = Rt01[3*3 + i];
*baseline = 0.0;
for(int i=0; i<3; i++) *baseline += right[i]*right[i];
*baseline = sqrt(*baseline);
if(*baseline < 1e-6)
{
MSG("The stereo pair has a unnaturally small baseline. Did you accidentally pass the same model for the two cameras?");
return false;
}
for(int i=0; i<3; i++) right[i] /= (*baseline);
// "forward" of the rectified coord system, in camera0 coords. The mean
// optical-axis direction of the two cameras: component orthogonal to "right"
double forward01[3] =
{
Rt01[0*3 + 2],
Rt01[1*3 + 2],
Rt01[2*3 + 2] + 1.,
};
double forward01_proj_right = 0.0;
for(int i=0; i<3; i++) forward01_proj_right += forward01[i]*right[i];
for(int i=0; i<3; i++) forward[i] = forward01[i] - forward01_proj_right*right[i];
double norm2_forward = 0.;
for(int i=0; i<3; i++) norm2_forward += forward[i]*forward[i];
for(int i=0; i<3; i++) forward[i] /= sqrt(norm2_forward);
// "down" of the rectified coord system, in camera0 coords. Completes the
// right,down,forward coordinate system
// down = cross(forward,right)
down[0] = forward[1]*right[2] - forward[2]*right[1];
down[1] = forward[2]*right[0] - forward[0]*right[2];
down[2] = forward[0]*right[1] - forward[1]*right[0];
// Done with the geometry! Now to get the az/el grid. I need to figure
// out the resolution and the extents
// I loosen the checks a bit, so that the checks pass after the correction
// despite any float error that might exist
const double az_edge_margin_deg_loose = az_edge_margin_deg - 1e-3;
mrcal_point2_t azel0 = { .x = azel0_deg->x * M_PI/180.,
.y = azel0_deg->y * M_PI/180. };
if(az0_deg_autodetect)
{
// In the rectified system az=0 sits perpendicular to the baseline.
// Normally the cameras are looking out perpendicular to the baseline
// also, so I center my azimuth samples around 0 to match the cameras'
// field of view. But what if the geometry isn't square, and one camera
// is behind the other? Like this:
//
// camera
// view
// ^
// |
// \ | /
// \_/
// . /
// . /az=0
// ./
// .
// baseline .
// .
// \ /
// \_/
//
// Here the center-of-view axis of each camera is not at all
// perpendicular to the baseline. Thus I compute the mean "forward"
// direction of the cameras in the rectified system, and set that as the
// center azimuth az0.
double norm2_forward01 = 0.0;
for(int i=0; i<3; i++) norm2_forward01 += forward01[i]*forward01[i];
azel0.x = asin( forward01_proj_right / sqrt(norm2_forward01) );
azel0_deg->x = azel0.x * 180./M_PI;
if( !(azel0_deg->x - azel_fov_deg->x/2. > -90.+az_edge_margin_deg_loose &&
azel0_deg->x + azel_fov_deg->x/2. < 90.-az_edge_margin_deg_loose) )
{
// The detected az0 makes us look along the baseline. I shift it to
// avoid that
if(azel_fov_deg->x > 180. - 2.*az_edge_margin_deg)
{
MSG("ERROR: rectified view cannot avoid looking along the baseline vector: az_fov_deg is too large. Have az_fov=%.1fdeg angle_margin=%.1fdeg",
azel_fov_deg->x, az_edge_margin_deg);
return false;
}
if(!(azel0_deg->x - azel_fov_deg->x/2. > -90.+az_edge_margin_deg_loose))
{
// We're off on this side
azel0_deg->x = -90.+az_edge_margin_deg + azel_fov_deg->x/2.;
}
else
{
// Off on the other side
azel0_deg->x = 90.-az_edge_margin_deg - azel_fov_deg->x/2.;
}
azel0.x = azel0_deg->x /180.*M_PI;
}
}
else
{
if( !(azel0_deg->x - azel_fov_deg->x/2. > -90.+az_edge_margin_deg_loose &&
azel0_deg->x + azel_fov_deg->x/2. < 90.-az_edge_margin_deg_loose) )
{
MSG("ERROR: rectified view looks along the baseline vector. Reduce az_fov_deg or move az0_deg closer to the center. Have az0=%.1fdeg az_fov=%.1fdeg angle_margin=%.1fdeg",
azel0_deg->x, azel_fov_deg->x, az_edge_margin_deg);
return false;
}
}
double R_cam0_rect0[3*3];
mrcal_invert_R(R_cam0_rect0, R_rect0_cam0);
if(!mrcal_rectified_resolution( // output
pixels_per_deg_az,
pixels_per_deg_el,
// input
lensmodel0,
intrinsics0,
azel_fov_deg,
azel0_deg,
R_cam0_rect0,
rectification_model_type))
return false;
// How do we apply the desired pixels_per_deg?
//
// With LENSMODEL_LATLON we have even angular spacing, so q = f th + c ->
// dq/dth = f everywhere.
//
// With LENSMODEL_PINHOLE the angular resolution changes across the image: q
// = f tan(th) + c -> dq/dth = f/cos^2(th). So at the center, th=0 and we
// have the maximum resolution
fxycxy_rectified[0] = *pixels_per_deg_az / M_PI*180.;
fxycxy_rectified[1] = *pixels_per_deg_el / M_PI*180.;
// if rectification_model == 'LENSMODEL_LATLON':
// # The angular resolution is consistent everywhere, so fx,fy are already
// # set. Let's set cx,cy such that
// # (az0,el0) = unproject(imager center)
// Naz = round(az_fov_deg*pixels_per_deg_az)
// Nel = round(el_fov_deg*pixels_per_deg_el)
imagersize_rectified[0] = (int)round(azel_fov_deg->x * (*pixels_per_deg_az));
imagersize_rectified[1] = (int)round(azel_fov_deg->y * (*pixels_per_deg_el));
// fxycxy[2:] =
// np.array(((Naz-1.)/2.,(Nel-1.)/2.)) -
// np.array((az0,el0)) * fxycxy[:2]
fxycxy_rectified[2] = ((double)(imagersize_rectified[0] - 1)) / 2 - azel0.x * fxycxy_rectified[0];
fxycxy_rectified[3] = ((double)(imagersize_rectified[1] - 1)) / 2 - azel0.y * fxycxy_rectified[1];
if(imagersize_rectified[1] <= 0)
{
MSG("Resulting stereo geometry has Nel=%d. This is nonsensical. You should examine the geometry or adjust the elevation bounds or pixels-per-deg",
imagersize_rectified[1]);
return false;
}
// The geometry
double Rt_rect0_ref[4*3];
mrcal_compose_Rt(Rt_rect0_ref,
Rt_rect0_cam0, Rt_cam0_ref);
mrcal_rt_from_Rt(rt_rect0_ref, NULL, Rt_rect0_ref);
return true;
}
// legacy function. Uses az_edge_margin_deg=10.0 without providing an argument
bool mrcal_rectified_system(// output
unsigned int* imagersize_rectified,
double* fxycxy_rectified,
double* rt_rect0_ref,
double* baseline,
// input, output
// > 0: use given value
// < 0: autodetect and scale
double* pixels_per_deg_az,
double* pixels_per_deg_el,
// input, output
// if(..._autodetect) { the results are returned here }
mrcal_point2_t* azel_fov_deg,
mrcal_point2_t* azel0_deg,
// input
// Intrinsics used only for pixels_per_deg detection
const mrcal_lensmodel_t* lensmodel0,
const double* intrinsics0,
const double* rt_cam0_ref,
const double* rt_cam1_ref,
const mrcal_lensmodel_type_t rectification_model_type,
bool az0_deg_autodetect,
bool el0_deg_autodetect,
bool az_fov_deg_autodetect,
bool el_fov_deg_autodetect)
{
const double az_edge_margin_deg = 10.0;
return mrcal_rectified_system2(// output
imagersize_rectified,
fxycxy_rectified,
rt_rect0_ref,
baseline,
// input, output
// > 0: use given value
// < 0: autodetect and scale
pixels_per_deg_az,
pixels_per_deg_el,
// input, output
// if(..._autodetect) { the results are returned here }
azel_fov_deg,
azel0_deg,
// input
az_edge_margin_deg,
lensmodel0,
intrinsics0,
rt_cam0_ref,
rt_cam1_ref,
rectification_model_type,
az0_deg_autodetect,
el0_deg_autodetect,
az_fov_deg_autodetect,
el_fov_deg_autodetect);
}
static
void set_rectification_map_pixel(// output
float* rectification_map0,
float* rectification_map1,
// input
const int i, const int j,
const mrcal_point3_t* v,
const mrcal_lensmodel_t* lensmodel0,
const double* intrinsics0,
const double* R_cam0_rect,
const mrcal_lensmodel_t* lensmodel1,
const double* intrinsics1,
const double* R_cam1_rect,
const unsigned int* imagersize_rectified)
{
mrcal_point3_t vcam;
mrcal_point2_t q;
vcam = *v;
mrcal_rotate_point_R(vcam.xyz, NULL, NULL,
R_cam0_rect, v->xyz);
mrcal_project(&q, NULL, NULL,
&vcam, 1,
lensmodel0, intrinsics0);
rectification_map0[(i*imagersize_rectified[0] + j)*2 + 0] = (float)q.x;
rectification_map0[(i*imagersize_rectified[0] + j)*2 + 1] = (float)q.y;
vcam = *v;
mrcal_rotate_point_R(vcam.xyz, NULL, NULL,
R_cam1_rect, v->xyz);
mrcal_project(&q, NULL, NULL,
&vcam, 1,
lensmodel1, intrinsics1);
rectification_map1[(i*imagersize_rectified[0] + j)*2 + 0] = (float)q.x;
rectification_map1[(i*imagersize_rectified[0] + j)*2 + 1] = (float)q.y;
}
bool mrcal_rectification_maps(// output
// Dense array of shape (Ncameras=2, Nel, Naz, Nxy=2)
float* rectification_maps,
// input
const mrcal_lensmodel_t* lensmodel0,
const double* intrinsics0,
const double* r_cam0_ref,
const mrcal_lensmodel_t* lensmodel1,
const double* intrinsics1,
const double* r_cam1_ref,
const mrcal_lensmodel_type_t rectification_model_type,
const double* fxycxy_rectified,
const unsigned int* imagersize_rectified,
const double* r_rect0_ref)
{
if( ! (rectification_model_type == MRCAL_LENSMODEL_LATLON ||
rectification_model_type == MRCAL_LENSMODEL_PINHOLE) )
{
MSG("%s() supports MRCAL_LENSMODEL_LATLON and MRCAL_LENSMODEL_PINHOLE only",
__func__);
return false;
}
double R_cam0_ref[3*3];
double R_cam1_ref[3*3];
mrcal_R_from_r(R_cam0_ref, NULL, r_cam0_ref);
mrcal_R_from_r(R_cam1_ref, NULL, r_cam1_ref);
double R_cam0_rect[3*3];
double R_cam1_rect[3*3];
double R_rect0_ref[3*3];
mrcal_R_from_r(R_rect0_ref, NULL, r_rect0_ref);
mul_genN3_gen33t_vout(3, R_cam0_ref, R_rect0_ref, R_cam0_rect);
mul_genN3_gen33t_vout(3, R_cam1_ref, R_rect0_ref, R_cam1_rect);
float* rectification_map0 = &(rectification_maps[0]);
float* rectification_map1 = &(rectification_maps[imagersize_rectified[0]*imagersize_rectified[1]*2]);
// I had this:
// for(int i=0; i<imagersize_rectified[1]; i++)
// for(int j=0; j<imagersize_rectified[0]; j++)
// {
// mrcal_point2_t q = {.x = j, .y = i};
// mrcal_point3_t v;
// mrcal_unproject_latlon(&v, NULL,
// &q,
// 1,
// fxycxy_rectified);
// ....
//
// I'm inlining the mrcal_unproject_latlon() call, and moving some constant
// guts outside the loops.
//
// And I'm computing sin,cos incrementally:
// sin(x0 + dx) = sin(x0)*cos(dx) + cos(x0)*sin(dx)
// cos(x0 + dx) = cos(x0)*cos(dx) - sin(x0)*sin(dx)
//
// Since dx is constant here I can compute the sin/cos sequence very
// quickly. One concern about this is that each computation would accumulate
// floating-point error, which could add up. The test-rectification-maps.py
// test explicitly checks for this, and determines that this isn't an issue
const double fx = fxycxy_rectified[0];
const double fy = fxycxy_rectified[1];
const double fx_recip = 1./fx;
const double fy_recip = 1./fy;
const double c_over_f_x = fxycxy_rectified[2] * fx_recip;
const double c_over_f_y = fxycxy_rectified[3] * fy_recip;
if(rectification_model_type == MRCAL_LENSMODEL_LATLON)
{
double sdlon = sin(fy_recip);
double cdlon = cos(fy_recip);
double sdlat = sin(fx_recip);
double cdlat = cos(fx_recip);
double lon0 = -c_over_f_y;
double slon0 = sin(lon0);
double clon0 = cos(lon0);
double lat0 = -c_over_f_x;
double slat0 = sin(lat0);
double clat0 = cos(lat0);
double slon = slon0, clon = clon0;
for(unsigned int i=0; i<imagersize_rectified[1]; i++)
{
double slat = slat0, clat = clat0;
for(unsigned int j=0; j<imagersize_rectified[0]; j++)
{
mrcal_point3_t v =
(mrcal_point3_t){.x = slat,
.y = clat * slon,
.z = clat * clon};
set_rectification_map_pixel( rectification_map0,
rectification_map1,
i,j,&v,
lensmodel0,
intrinsics0,
R_cam0_rect,
lensmodel1,
intrinsics1,
R_cam1_rect,
imagersize_rectified);
double _slat = slat;
slat = _slat*cdlat + clat*sdlat;
clat = clat*cdlat - _slat*sdlat;
}
double _slon = slon;
slon = _slon*cdlon + clon*sdlon;
clon = clon*cdlon - _slon*sdlon;
}
}
else
{
// MRCAL_LENSMODEL_PINHOLE
for(unsigned int i=0; i<imagersize_rectified[1]; i++)
{
for(unsigned int j=0; j<imagersize_rectified[0]; j++)
{
mrcal_point3_t v =
(mrcal_point3_t){.x = (double)j*fx_recip - c_over_f_x,
.y = (double)i*fy_recip - c_over_f_y,
.z = 1.0};
set_rectification_map_pixel( rectification_map0,
rectification_map1,
i,j,&v,
lensmodel0,
intrinsics0,
R_cam0_rect,
lensmodel1,
intrinsics1,
R_cam1_rect,
imagersize_rectified);
}
}
}
return true;
}
// Logic from GetColorValueFromFormula() in src/getcolor.c in the gnuplot
// sources
static bool
gnuplot_color_formula(uint8_t* out,
int formula, float x)
{
/* the input gray x is supposed to be in interval [0,1] */
if (formula < 0) { /* negate the value for negative formula */
x = 1.f - x;
formula = -formula;
}
switch (formula) {
case 0:
x = 0.f;
break;
case 1:
x = 0.5f;
break;
case 2:
x = 1.f;
break;
case 3: /* x = x */
break;
case 4:
x = x * x;
break;
case 5:
x = x * x * x;
break;
case 6:
x = x * x * x * x;
break;
case 7:
x = sqrtf(x);
break;
case 8:
x = sqrtf(sqrtf(x));
break;
case 9:
x = sinf(90.f * x * M_PI/180.f);
break;
case 10:
x = cosf(90.f * x * M_PI/180.f);
break;
case 11:
x = fabsf(x - 0.5f);
break;
case 12:
x = (2.f * x - 1.f) * (2.0 * x - 1.f);
break;
case 13:
x = sinf(180.f * x * M_PI/180.f);
break;
case 14:
x = fabsf(cosf(180.f * x * M_PI/180.f));
break;
case 15:
x = sinf(360.f * x * M_PI/180.f);
break;
case 16:
x = cosf(360.f * x * M_PI/180.f);
break;
case 17:
x = fabsf(sinf(360.f * x * M_PI/180.f));
break;
case 18:
x = fabsf(cosf(360.f * x * M_PI/180.f));
break;
case 19:
x = fabsf(sinf(720.f * x * M_PI/180.f));
break;
case 20:
x = fabsf(cosf(720.f * x * M_PI/180.f));
break;
case 21:
x = 3.f * x;
break;
case 22:
x = 3.f * x - 1.f;
break;
case 23:
x = 3.f * x - 2.f;
break;
case 24:
x = fabsf(3.f * x - 1.f);
break;
case 25:
x = fabsf(3.f * x - 2.f);
break;
case 26:
x = (1.5f * x - 0.5f);
break;
case 27:
x = (1.5f * x - 1.f);
break;
case 28:
x = fabsf(1.5f * x - 0.5f);
break;
case 29:
x = fabsf(1.5f * x - 1.f);
break;
case 30:
if (x <= 0.25f)
x = 0.f;
else if (x >= 0.57f)
x = 1.f;
else
x = x / 0.32f - 0.78125f;
break;
case 31:
if (x <= 0.42f)
x = 0.f;
else if (x >= 0.92f)
x = 1.f;
else
x = 2.f * x - 0.84f;
break;
case 32:
if (x <= 0.42f)
x *= 4.f;
else
x = (x <= 0.92f) ? -2.f * x + 1.84f : x / 0.08f - 11.5f;
break;
case 33:
x = fabsf(2.f * x - 0.5f);
break;
case 34:
x = 2.f * x;
break;
case 35:
x = 2.f * x - 0.5f;
break;
case 36:
x = 2.f * x - 1.f;
break;
default:
return false;
}
if (x <= 0.f) x = 0.f;
else if (x >= 1.f) x = 1.f;
// round to nearest integer
*out = (uint8_t)(0.5f + 255.0f*x);
return true;
}
// Color-code an array
// I use gnuplot's color-mapping functions to do this. gnuplot's "show palette"
// help message displays the current gnuplot settings and "test palette"
// displays the palette. The function definitions are given by "show palette
// rgbformulae":
//
// > show palette rgbformulae
// * there are 37 available rgb color mapping formulae:
// 0: 0 1: 0.5 2: 1
// 3: x 4: x^2 5: x^3
// 6: x^4 7: sqrt(x) 8: sqrt(sqrt(x))
// 9: sin(90x) 10: cos(90x) 11: |x-0.5|
// 12: (2x-1)^2 13: sin(180x) 14: |cos(180x)|
// 15: sin(360x) 16: cos(360x) 17: |sin(360x)|
// 18: |cos(360x)| 19: |sin(720x)| 20: |cos(720x)|
// 21: 3x 22: 3x-1 23: 3x-2
// 24: |3x-1| 25: |3x-2| 26: (3x-1)/2
// 27: (3x-2)/2 28: |(3x-1)/2| 29: |(3x-2)/2|
// 30: x/0.32-0.78125 31: 2*x-0.84 32: 4x;1;-2x+1.84;x/0.08-11.5
// 33: |2*x - 0.5| 34: 2*x 35: 2*x - 0.5
// 36: 2*x - 1
// * negative numbers mean inverted=negative colour component
// * thus the ranges in `set pm3d rgbformulae' are -36..36
#define DEFINE_mrcal_apply_color_map(T,Tname,T_MIN,T_MAX) \
bool mrcal_apply_color_map_##Tname( \
mrcal_image_bgr_t* out, \
const mrcal_image_##Tname##_t* in, \
\
/* If true, I set in_min/in_max from the */ \
/* min/max of the input data */ \
const bool auto_min, \
const bool auto_max, \
\
/* If true, I implement gnuplot's default 7,5,15 mapping. */ \
/* This is a reasonable default choice. */ \
/* function_red/green/blue are ignored if true */ \
const bool auto_function, \
\
/* min/max input values to use if not */ \
/* auto_min/auto_max */ \
T in_min, /* will map to 0 */ \
T in_max, /* will map to 255 */ \
\
/* The color mappings to use. If !auto_function */ \
int function_red, \
int function_green, \
int function_blue) \
{ \
const int w = in->width; \
const int h = in->height; \
if(!(w == out->width && h == out->height)) \
{ \
MSG("%s(): input and output images MUST have the same dimensions", \
__func__); \
return false; \
} \
\
if(auto_min || auto_max) \
{ \
if(auto_min) in_min = T_MAX; \
if(auto_max) in_max = T_MIN; \
\
for(int y=0; y<h; y++) \
for(int x=0; x<w; x++) \
{ \
const T v = *mrcal_image_##Tname##_at_const(in, x,y); \
if(auto_min && v < in_min) in_min = v; \
if(auto_max && v > in_max) in_max = v; \
} \
} \
\
if(auto_function) \
{ \
function_red = 7; \
function_green = 5; \
function_blue = 15; \
} \
\
for(int y=0; y<h; y++) \
{ \
for(int x=0; x<w; x++) \
{ \
const T* in_T = mrcal_image_##Tname##_at_const(in, x,y); \
\
mrcal_bgr_t* out_bgr = mrcal_image_bgr_at( out, x,y); \
\
float x; \
if (*in_T <= in_min) \
x = 0.0f; \
else if(*in_T >= in_max) \
x = 1.0f; \
else \
x = (float)(*in_T - in_min) / (float)(in_max - in_min); \
\
if(!gnuplot_color_formula(&out_bgr->bgr[2], function_red, x) || \
!gnuplot_color_formula(&out_bgr->bgr[1], function_green, x) || \
!gnuplot_color_formula(&out_bgr->bgr[0], function_blue, x)) \
return false; \
} \
} \
\
return true; \
}
DEFINE_mrcal_apply_color_map(uint8_t, uint8, 0, UINT8_MAX)
DEFINE_mrcal_apply_color_map(uint16_t, uint16, 0, UINT16_MAX)
DEFINE_mrcal_apply_color_map(uint32_t, uint32, 0, UINT32_MAX)
DEFINE_mrcal_apply_color_map(uint64_t, uint64, 0, UINT64_MAX)
DEFINE_mrcal_apply_color_map(int8_t, int8, INT8_MIN, INT8_MAX)
DEFINE_mrcal_apply_color_map(int16_t, int16, INT16_MIN, INT16_MAX)
DEFINE_mrcal_apply_color_map(int32_t, int32, INT32_MIN, INT32_MAX)
DEFINE_mrcal_apply_color_map(int64_t, int64, INT64_MIN, INT64_MAX)
DEFINE_mrcal_apply_color_map(float, float, FLT_MIN, FLT_MAX)
DEFINE_mrcal_apply_color_map(double, double, DBL_MIN, DBL_MAX)
static bool _validate_rectification_model_type(const mrcal_lensmodel_type_t rectification_model_type)
{
if(rectification_model_type == MRCAL_LENSMODEL_LATLON ||
rectification_model_type == MRCAL_LENSMODEL_PINHOLE)
return true;
// ERROR
const char* rectification_model_string =
mrcal_lensmodel_name_unconfigured( &(mrcal_lensmodel_t){.type = rectification_model_type} );
if(rectification_model_string == NULL)
{
MSG("Unknown rectification_model_type=%d\n", rectification_model_type);
return false;
}
MSG("Invalid rectification_model_type for rectification: %s; I know about MRCAL_LENSMODEL_LATLON and MRCAL_LENSMODEL_PINHOLE\n",
rectification_model_string);
return false;
}
static double _stereo_range_one(const double disparity,
const mrcal_point2_t qrect0,
// models_rectified
const mrcal_lensmodel_type_t rectification_model_type,
const double* fxycxy_rectified,
const double baseline )
{
// See the docstring for mrcal.stereo_range() for the derivation
const double fx = fxycxy_rectified[0];
const double fy = fxycxy_rectified[1];
const double cx = fxycxy_rectified[2];
const double cy = fxycxy_rectified[3];
if(rectification_model_type == MRCAL_LENSMODEL_LATLON)
{
const double az0 = (qrect0.x - cx)/fx;
const double disparity_rad = disparity / fx;
const double range =
baseline *
cos(az0 - disparity_rad) / sin(disparity_rad);
if(!isfinite(range)) return 0.0;
return range;
}
// _validate_rectification_model_type() makes sure this is true
// if(rectification_model_type == MRCAL_LENSMODEL_PINHOLE)
{
const double tanaz0 = (qrect0.x - cx) / fx;
const double tanel = (qrect0.y - cy) / fy;
const double s_sq_recip = tanel*tanel + 1.;
const double tanaz0_tanaz1 = disparity / fx;
const double tanaz1 = tanaz0 - tanaz0_tanaz1;
const double range =
baseline /
sqrt(s_sq_recip + tanaz0*tanaz0) *
( (s_sq_recip + tanaz0*tanaz1) / tanaz0_tanaz1 +
tanaz0 );
if(!isfinite(range)) return 0.0;
return range;
}
}
bool mrcal_stereo_range_sparse(// output
double* range, // N of these
// input
const double* disparity, // N of these
const mrcal_point2_t* qrect0, // N of these
const int N, // how many points
const double disparity_min,
const double disparity_max,
// models_rectified
const mrcal_lensmodel_type_t rectification_model_type,
const double* fxycxy_rectified,
const double baseline)
{
if(!_validate_rectification_model_type(rectification_model_type))
return false;
if(disparity_min >= disparity_max)
{
MSG("Must have disparity_max > disparity_min");
return false;
}
for(int i=0; i<N; i++)
{
if(disparity[i] <= 0.0 ||
disparity[i] < disparity_min ||
disparity[i] > disparity_max )
{
range[i] = 0.0;
}
else
range[i] = _stereo_range_one(disparity[i],
qrect0[i],
rectification_model_type,
fxycxy_rectified,
baseline);
}
return true;
}
bool mrcal_stereo_range_dense(// output
mrcal_image_double_t* range,
// input
const mrcal_image_uint16_t* disparity_scaled,
const uint16_t disparity_scale,
// Used to detect invalid values. Set to
// 0,UINT16_MAX to ignore
const uint16_t disparity_scaled_min,
const uint16_t disparity_scaled_max,
// models_rectified
const mrcal_lensmodel_type_t rectification_model_type,
const double* fxycxy_rectified,
const double baseline)
{
if(!_validate_rectification_model_type(rectification_model_type))
return false;
if(disparity_scaled_min >= disparity_scaled_max)
{
MSG("Must have disparity_scaled_max > disparity_scaled_min");
return false;
}
if(range->width != disparity_scaled->width ||
range->height != disparity_scaled->height)
{
MSG("range and disparity_scaled MUST have the same dimensions. Got (W,H): (%d,%d) and (%d,%d) respectively\n",
range->width, range->height,
disparity_scaled->width, disparity_scaled->height);
return false;
}
const int W = range->width;
const int H = range->height;
for(int i=0; i<H; i++)
{
double* r_row = mrcal_image_double_at( range, 0, i);
const uint16_t* d_row = mrcal_image_uint16_at_const(disparity_scaled, 0, i);
for(int j=0; j<W; j++)
{
if(d_row[j] <= 0.0 ||
d_row[j] < disparity_scaled_min ||
d_row[j] > disparity_scaled_max )
{
r_row[j] = 0.0;
}
else
r_row[j] =
_stereo_range_one((double)(d_row[j]) / (double)disparity_scale,
(mrcal_point2_t){.x = (double)j,
.y = (double)i},
rectification_model_type,
fxycxy_rectified,
baseline);
}
}
return true;
}
|