1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
|
// Copyright (c) 2017-2023 California Institute of Technology ("Caltech"). U.S.
// Government sponsorship acknowledged. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
#include "_autodiff.hh"
extern "C" {
#include "triangulation.h"
}
template <int NGRAD>
static
bool
triangulate_assume_intersect( // output
vec_withgrad_t<NGRAD,3>& m,
// inputs. camera-0 coordinates
const vec_withgrad_t<NGRAD,3>& v0,
const vec_withgrad_t<NGRAD,3>& v1,
const vec_withgrad_t<NGRAD,3>& t01)
{
// I take two 3D rays that are assumed to intersect, and return the
// intersection point. Results are undefined if these rays actually
// don't intersect
// Each pixel observation represents a ray in 3D:
//
// k0 v0 = t01 + k1 v1
//
// t01 = [v0 -v1] k
//
// This is over-determined: k has 2DOF, but I have 3 equations. I know that
// the vectors intersect, so I can use 2 axes only, which makes the problem
// uniquely determined. Let's pick the 2 axes to use. The "forward"
// direction (z) is dominant, so let's use that. For the second axis, let's
// use whichever is best numerically: biggest abs(det), so that I divide by
// something as far away from 0 as possible. I have
//
double fabs_det_xz = fabs(-v0.v[0].x*v1.v[2].x + v0.v[2].x*v1.v[0].x);
double fabs_det_yz = fabs(-v0.v[1].x*v1.v[2].x + v0.v[2].x*v1.v[1].x);
// If using xz, I have:
//
// k = 1/(-v0[0]*v1[2] + v0[2]*v1[0]) * [-v1[2] v1[0] ] t01
// [-v0[2] v0[0] ]
// [0] -> [1] if using yz
val_withgrad_t<NGRAD> k0;
if(fabs_det_xz > fabs_det_yz)
{
// xz
if(fabs_det_xz <= 1e-10)
return false;
val_withgrad_t<NGRAD> det = v1.v[0]*v0.v[2] - v0.v[0]*v1.v[2];
k0 = (t01.v[2]*v1.v[0] - t01.v[0]*v1.v[2]) / det;
if(k0.x <= 0.0)
return false;
bool k1_negative = (t01.v[2].x*v0.v[0].x > t01.v[0].x*v0.v[2].x) ^ (det.x > 0);
if(k1_negative)
return false;
#if 0
val_withgrad_t<NGRAD> k1 = (t01.v[2]*v0.v[0] - t01.v[0]*v0.v[2]) / det;
vec_withgrad_t<NGRAD,3> m2 = v1*k1 + t01;
m2 -= m;
double d2 = m2.v[0].x*m2.v[0].x + m2.v[1].x*m2.v[1].x + m2.v[2].x*m2.v[2].x;
fprintf(stderr, "diff: %f\n", d2);
#endif
}
else
{
// yz
if(fabs_det_yz <= 1e-10)
return false;
val_withgrad_t<NGRAD> det = v1.v[1]*v0.v[2] - v0.v[1]*v1.v[2];
k0 = (t01.v[2]*v1.v[1] - t01.v[1]*v1.v[2]) / det;
if(k0.x <= 0.0)
return false;
bool k1_negative = (t01.v[2].x*v0.v[1].x > t01.v[1].x*v0.v[2].x) ^ (det.x > 0);
if(k1_negative)
return false;
#if 0
val_withgrad_t<NGRAD> k1 = (t01.v[2]*v0.v[1] - t01.v[1]*v0.v[2]) / det;
vec_withgrad_t<NGRAD,3> m2 = v1*k1 + t01;
m2 -= m;
double d2 = m2.v[1].x*m2.v[1].x + m2.v[1].x*m2.v[1].x + m2.v[2].x*m2.v[2].x;
fprintf(stderr, "diff: %f\n", d2);
#endif
}
m = v0 * k0;
return true;
}
#warning "These all have NGRAD=9, which is inefficient: some/all of the requested gradients could be NULL"
// Basic closest-approach-in-3D routine
extern "C"
mrcal_point3_t
mrcal_triangulate_geometric(// outputs
// These all may be NULL
mrcal_point3_t* _dm_dv0,
mrcal_point3_t* _dm_dv1,
mrcal_point3_t* _dm_dt01,
// inputs
// not-necessarily normalized vectors in the camera-0
// coord system
const mrcal_point3_t* _v0,
const mrcal_point3_t* _v1,
const mrcal_point3_t* _t01)
{
// This is the basic 3D-geometry routine. I find the point in 3D that
// minimizes the distance to each of the observation rays. This is simple,
// but not as accurate as we'd like. All the other methods have lower
// biases. See the Lee-Civera papers for details:
//
// Paper that compares all methods implemented here:
// "Triangulation: Why Optimize?", Seong Hun Lee and Javier Civera.
// https://arxiv.org/abs/1907.11917
//
// Earlier paper that doesn't have mid2 or wmid2:
// "Closed-Form Optimal Two-View Triangulation Based on Angular Errors",
// Seong Hun Lee and Javier Civera. ICCV 2019.
//
// Each pixel observation represents a ray in 3D. The best
// estimate of the 3d position of the point being observed
// is the point nearest to both these rays
//
// Let's say I have a ray from the origin to v0, and another ray from t01
// to v1 (v0 and v1 aren't necessarily normal). Let the nearest points on
// each ray be k0 and k1 along each ray respectively: E = norm2(t01 + k1*v1
// - k0*v0):
//
// dE/dk0 = 0 = inner(t01 + k1*v1 - k0*v0, -v0)
// dE/dk1 = 0 = inner(t01 + k1*v1 - k0*v0, v1)
//
// -> t01.v0 + k1 v0.v1 = k0 v0.v0
// -t01.v1 + k0 v0.v1 = k1 v1.v1
//
// -> [ v0.v0 -v0.v1] [k0] = [ t01.v0]
// [ -v0.v1 v1.v1] [k1] = [-t01.v1]
//
// -> [k0] = 1/(v0.v0 v1.v1 -(v0.v1)**2) [ v1.v1 v0.v1][ t01.v0]
// [k1] [ v0.v1 v0.v0][-t01.v1]
//
// I return the midpoint:
//
// x = (k0 v0 + t01 + k1 v1)/2
vec_withgrad_t<9,3> v0 (_v0 ->xyz, 0);
vec_withgrad_t<9,3> v1 (_v1 ->xyz, 3);
vec_withgrad_t<9,3> t01(_t01->xyz, 6);
val_withgrad_t<9> dot_v0v0 = v0.norm2();
val_withgrad_t<9> dot_v1v1 = v1.norm2();
val_withgrad_t<9> dot_v0v1 = v0.dot(v1);
val_withgrad_t<9> dot_v0t = v0.dot(t01);
val_withgrad_t<9> dot_v1t = v1.dot(t01);
val_withgrad_t<9> denom = dot_v0v0*dot_v1v1 - dot_v0v1*dot_v0v1;
if(-1e-10 <= denom.x && denom.x <= 1e-10)
return (mrcal_point3_t){0};
val_withgrad_t<9> denom_recip = val_withgrad_t<9>(1.)/denom;
val_withgrad_t<9> k0 = denom_recip * (dot_v1v1*dot_v0t - dot_v0v1*dot_v1t);
if(k0.x <= 0.0) return (mrcal_point3_t){0};
val_withgrad_t<9> k1 = denom_recip * (dot_v0v1*dot_v0t - dot_v0v0*dot_v1t);
if(k1.x <= 0.0) return (mrcal_point3_t){0};
vec_withgrad_t<9,3> m = (v0*k0 + v1*k1 + t01) * 0.5;
mrcal_point3_t _m;
m.extract_value(_m.xyz);
if(_dm_dv0 != NULL)
m.extract_grad (_dm_dv0->xyz, 0,3, 0,
3*sizeof(double), sizeof(double),
3);
if(_dm_dv1 != NULL)
m.extract_grad (_dm_dv1->xyz, 3,3, 0,
3*sizeof(double), sizeof(double),
3);
if(_dm_dt01 != NULL)
m.extract_grad (_dm_dt01->xyz, 6,3, 0,
3*sizeof(double), sizeof(double),
3);
#if 0
MSG("intersecting...");
MSG("v0 = (%.20f,%.20f,%.20f)", v0[0].x,v0[1].x,v0[2].x);
MSG("t01 = (%.20f,%.20f,%.20f)", t01[0].x,t01[1].x,t01[2].x);
MSG("v1 = (%.20f,%.20f,%.20f)", v1[0].x,v1[1].x,v1[2].x);
MSG("intersection = (%.20f,%.20f,%.20f) dist %f",
m.v[0].x,m.v[1].x,m.v[2].x,
sqrt( m.dot(m).x));
#endif
return _m;
}
// Minimize L2 pinhole reprojection error. Described in "Triangulation Made
// Easy", Peter Lindstrom, IEEE Conference on Computer Vision and Pattern
// Recognition, 2010.
extern "C"
mrcal_point3_t
mrcal_triangulate_lindstrom(// outputs
// These all may be NULL
mrcal_point3_t* _dm_dv0,
mrcal_point3_t* _dm_dv1,
mrcal_point3_t* _dm_dRt01,
// inputs
// not-necessarily normalized vectors in the LOCAL
// coordinate system. This is different from the other
// triangulation routines
const mrcal_point3_t* _v0_local,
const mrcal_point3_t* _v1_local,
const mrcal_point3_t* _Rt01)
{
// This is an implementation of the algorithm described in "Triangulation
// Made Easy", Peter Lindstrom, IEEE Conference on Computer Vision and
// Pattern Recognition, 2010. A copy of this paper is available in this repo
// in docs/TriangulationLindstrom.pdf. The implementation here is the niter2
// routine in Listing 3. There's a higher-level implemented-in-python test
// in analyses/triangulation.py
//
// A simpler, but less-accurate way of doing is lives in
// triangulate_direct()
// I'm looking at wikipedia for the Essential matrix definition:
//
// https://en.wikipedia.org/wiki/Essential_matrix
//
// and at Lindstrom's paper. Note that THEY HAVE DIFFERENT DEFINITIONS OF E
//
// I stick to Lindstrom's convention here. He has (section 2, equation 3)
//
// E = cross(t) R
// transpose(x0) E x1 = 0
//
// What are R and t?
//
// x0' cross(t) R x1 = 0
// x0' cross(t) R (R10 x0 + t10) = 0
//
// So Lindstrom has R = R01 ->
//
// x0' cross(t) R01 (R10 x0 + t10) = 0
// x0' cross(t) (x0 + R01 t10) = 0
// x0' cross(t) R01 t10 = 0
//
// This holds if Lindstrom has R01 t10 = +- t
//
// Note that if x1 = R10 x0 + t10 then x0 = R01 x1 - R01 t10
//
// So I let t = t01
//
// Thus he's multiplying cross(t01) and R01:
//
// E = cross(t01) R01
// = cross(t01) R10'
// cross(t01) = np.array(((0, -t01[2], t01[1]),
// ( t01[2], 0, -t01[0]),
// (-t01[1], t01[0], 0)));
vec_withgrad_t<18,3> v0 (_v0_local->xyz, 0);
vec_withgrad_t<18,3> v1 (_v1_local->xyz, 3);
vec_withgrad_t<18,9> R01(_Rt01 ->xyz, 6);
vec_withgrad_t<18,3> t01(_Rt01[3] .xyz, 15);
val_withgrad_t<18> E[9] = { R01[6]*t01[1] - R01[3]*t01[2],
R01[7]*t01[1] - R01[4]*t01[2],
R01[8]*t01[1] - R01[5]*t01[2],
R01[0]*t01[2] - R01[6]*t01[0],
R01[1]*t01[2] - R01[7]*t01[0],
R01[2]*t01[2] - R01[8]*t01[0],
R01[3]*t01[0] - R01[0]*t01[1],
R01[4]*t01[0] - R01[1]*t01[1],
R01[5]*t01[0] - R01[2]*t01[1] };
// Paper says to rescale x0,x1 such that their last element is 1.0.
// I don't even store it
val_withgrad_t<18> x0[2] = { v0[0]/v0[2], v0[1]/v0[2] };
val_withgrad_t<18> x1[2] = { v1[0]/v1[2], v1[1]/v1[2] };
// for debugging
#if 0
{
fprintf(stderr, "E:\n");
for(int i=0; i<3; i++)
fprintf(stderr, "%f %f %f\n", E[0 + 3*i].x, E[1 + 3*i].x, E[2 + 3*i].x);
double Ex1[3] = { E[0].x*x1[0].x + E[1].x*x1[1].x + E[2].x,
E[3].x*x1[0].x + E[4].x*x1[1].x + E[5].x,
E[6].x*x1[0].x + E[7].x*x1[1].x + E[8].x };
double x0Ex1 = Ex1[0]*x0[0].x + Ex1[1]*x0[1].x + Ex1[2];
fprintf(stderr, "conj before: %f\n", x0Ex1);
}
#endif
// Now I implement the algorithm. x0 here is x in the paper; x1 here
// is x' in the paper
// Step 1. n = nps.matmult(x1, nps.transpose(E))[:2]
val_withgrad_t<18> n[2];
n[0] = E[0]*x1[0] + E[1]*x1[1] + E[2];
n[1] = E[3]*x1[0] + E[4]*x1[1] + E[5];
// Step 2. nn = nps.matmult(x0, E)[:2]
val_withgrad_t<18> nn[2];
nn[0] = E[0]*x0[0] + E[3]*x0[1] + E[6];
nn[1] = E[1]*x0[0] + E[4]*x0[1] + E[7];
// Step 3. a = nps.matmult( n, E[:2,:2], nps.transpose(nn) ).ravel()
val_withgrad_t<18> a =
n[0]*E[0]*nn[0] +
n[0]*E[1]*nn[1] +
n[1]*E[3]*nn[0] +
n[1]*E[4]*nn[1];
// Step 4. b = 0.5*( nps.inner(n,n) + nps.inner(nn,nn) )
val_withgrad_t<18> b = (n [0]*n [0] + n [1]*n [1] +
nn[0]*nn[0] + nn[1]*nn[1]) * 0.5;
// Step 5. c = nps.matmult(x0, E, nps.transpose(x1)).ravel()
val_withgrad_t<18> n_2 =
E[6]*x1[0] +
E[7]*x1[1] +
E[8];
val_withgrad_t<18> c =
n[0]*x0[0] +
n[1]*x0[1] +
n_2;
// Step 6. d = np.sqrt( b*b - a*c )
val_withgrad_t<18> d = (b*b - a*c).sqrt();
// Step 7. l = c / (b+d)
val_withgrad_t<18> l = c / (b + d);
// Step 8. dx = l*n
val_withgrad_t<18> dx[2] = { l * n[0], l * n[1] };
// Step 9. dxx = l*nn
val_withgrad_t<18> dxx[2] = { l * nn[0], l * nn[1] };
// Step 10. n -= nps.matmult(dxx, nps.transpose(E[:2,:2]))
n[0] = n[0] - E[0]*dxx[0] - E[1]*dxx[1] ;
n[1] = n[1] - E[3]*dxx[0] - E[4]*dxx[1] ;
// Step 11. nn -= nps.matmult(dx, E[:2,:2])
nn[0] = nn[0] - E[0]*dx[0] - E[3]*dx[1] ;
nn[1] = nn[1] - E[1]*dx[0] - E[4]*dx[1] ;
// Step 12. l *= 2*d/( nps.inner(n,n) + nps.inner(nn,nn) )
val_withgrad_t<18> bb = (n [0]*n [0] + n [1]*n [1] +
nn[0]*nn[0] + nn[1]*nn[1]) * 0.5;
l = l/d * bb;
// Step 13. dx = l*n
dx[0] = l * n[0];
dx[1] = l * n[1];
// Step 14. dxx = l*nn
dxx[0] = l * nn[0];
dxx[1] = l * nn[1];
// Step 15
v0.v[0] = x0[0] - dx[0];
v0.v[1] = x0[1] - dx[1];
v0.v[2] = val_withgrad_t<18>(1.0);
// Step 16
v1.v[0] = x1[0] - dxx[0];
v1.v[1] = x1[1] - dxx[1];
v1.v[2] = val_withgrad_t<18>(1.0);
// for debugging
#if 0
{
double Ex1[3] = { E[0].x*v1[0].x + E[1].x*v1[1].x + E[2].x,
E[3].x*v1[0].x + E[4].x*v1[1].x + E[5].x,
E[6].x*v1[0].x + E[7].x*v1[1].x + E[8].x };
double x0Ex1 = Ex1[0]*v0[0].x + Ex1[1]*v0[1].x + Ex1[2];
fprintf(stderr, "conj after: %f\n", x0Ex1);
}
#endif
// Construct v0, v1 in a common coord system
vec_withgrad_t<18,3> Rv1;
Rv1.v[0] = R01.v[0]*v1.v[0] + R01.v[1]*v1.v[1] + R01.v[2]*v1.v[2];
Rv1.v[1] = R01.v[3]*v1.v[0] + R01.v[4]*v1.v[1] + R01.v[5]*v1.v[2];
Rv1.v[2] = R01.v[6]*v1.v[0] + R01.v[7]*v1.v[1] + R01.v[8]*v1.v[2];
// My two 3D rays now intersect exactly, and I use compute the intersection
// with that assumption
vec_withgrad_t<18,3> m;
if(!triangulate_assume_intersect(m, v0, Rv1, t01))
return (mrcal_point3_t){0};
mrcal_point3_t _m;
m.extract_value(_m.xyz);
if(_dm_dv0 != NULL)
m.extract_grad (_dm_dv0->xyz, 0,3, 0,
3*sizeof(double), sizeof(double),
3);
if(_dm_dv1 != NULL)
m.extract_grad (_dm_dv1->xyz, 3,3, 0,
3*sizeof(double), sizeof(double),
3);
if(_dm_dRt01 != NULL)
m.extract_grad (_dm_dRt01->xyz, 6,12,0,
12*sizeof(double), sizeof(double),
3);
return _m;
}
// Minimize L1 angle error. Described in "Closed-Form Optimal Two-View
// Triangulation Based on Angular Errors", Seong Hun Lee and Javier Civera. ICCV
// 2019.
extern "C"
mrcal_point3_t
mrcal_triangulate_leecivera_l1(// outputs
// These all may be NULL
mrcal_point3_t* _dm_dv0,
mrcal_point3_t* _dm_dv1,
mrcal_point3_t* _dm_dt01,
// inputs
// not-necessarily normalized vectors in the camera-0
// coord system
const mrcal_point3_t* _v0,
const mrcal_point3_t* _v1,
const mrcal_point3_t* _t01)
{
// The paper has m0, m1 as the cam1-frame observation vectors. I do
// everything in cam0-frame
vec_withgrad_t<9,3> v0 (_v0 ->xyz, 0);
vec_withgrad_t<9,3> v1 (_v1 ->xyz, 3);
vec_withgrad_t<9,3> t01(_t01->xyz, 6);
val_withgrad_t<9> dot_v0v0 = v0.norm2();
val_withgrad_t<9> dot_v1v1 = v1.norm2();
val_withgrad_t<9> dot_v0t = v0.dot(t01);
val_withgrad_t<9> dot_v1t = v1.dot(t01);
// I pick a bath based on which len(cross(normalize(m),t)) is larger: which
// of m0 and m1 is most perpendicular to t. I can use a simpler dot product
// here instead: the m that is most perpendicular to t will have the
// smallest dot product.
//
// len(cross(m0/len(m0), t)) < len(cross(m1/len(m1), t)) ~
// len(cross(v0/len(v0), t)) < len(cross(v1/len(v1), t)) ~
// abs(dot(v0/len(v0), t)) > abs(dot(v1/len(v1), t)) ~
// (dot(v0/len(v0), t))^2 > (dot(v1/len(v1), t))^2 ~
// (dot(v0, t))^2 norm2(v1) > (dot(v1, t))^2 norm2(v0) ~
if(dot_v0t.x*dot_v0t.x * dot_v1v1.x > dot_v1t.x*dot_v1t.x * dot_v0v0.x )
{
// Equation (12)
vec_withgrad_t<9,3> n1 = cross<9>(v1, t01);
v0 -= n1 * v0.dot(n1)/n1.norm2();
}
else
{
// Equation (13)
vec_withgrad_t<9,3> n0 = cross<9>(v0, t01);
v1 -= n0 * v1.dot(n0)/n0.norm2();
}
// My two 3D rays now intersect exactly, and I use compute the intersection
// with that assumption
vec_withgrad_t<9,3> m;
if(!triangulate_assume_intersect(m, v0, v1, t01))
return (mrcal_point3_t){0};
mrcal_point3_t _m;
m.extract_value(_m.xyz);
if(_dm_dv0 != NULL)
m.extract_grad (_dm_dv0->xyz, 0,3, 0,
3*sizeof(double), sizeof(double),
3);
if(_dm_dv1 != NULL)
m.extract_grad (_dm_dv1->xyz, 3,3, 0,
3*sizeof(double), sizeof(double),
3);
if(_dm_dt01 != NULL)
m.extract_grad (_dm_dt01->xyz, 6,3,0,
3*sizeof(double), sizeof(double),
3);
return _m;
}
// Minimize L-infinity angle error. Described in "Closed-Form Optimal Two-View
// Triangulation Based on Angular Errors", Seong Hun Lee and Javier Civera. ICCV
// 2019.
extern "C"
mrcal_point3_t
mrcal_triangulate_leecivera_linf(// outputs
// These all may be NULL
mrcal_point3_t* _dm_dv0,
mrcal_point3_t* _dm_dv1,
mrcal_point3_t* _dm_dt01,
// inputs
// not-necessarily normalized vectors in the camera-0
// coord system
const mrcal_point3_t* _v0,
const mrcal_point3_t* _v1,
const mrcal_point3_t* _t01)
{
// The paper has m0, m1 as the cam1-frame observation vectors. I do
// everything in cam0-frame
vec_withgrad_t<9,3> v0 (_v0 ->xyz, 0);
vec_withgrad_t<9,3> v1 (_v1 ->xyz, 3);
vec_withgrad_t<9,3> t01(_t01->xyz, 6);
v0 /= v0.mag();
v1 /= v1.mag();
vec_withgrad_t<9,3> na = cross<9>(v0 + v1, t01);
vec_withgrad_t<9,3> nb = cross<9>(v0 - v1, t01);
vec_withgrad_t<9,3>& n =
( na.norm2().x > nb.norm2().x ) ?
na : nb;
v0 -= n * v0.dot(n)/n.norm2();
v1 -= n * v1.dot(n)/n.norm2();
// My two 3D rays now intersect exactly, and I use compute the intersection
// with that assumption
vec_withgrad_t<9,3> m;
if(!triangulate_assume_intersect(m, v0, v1, t01))
return (mrcal_point3_t){0};
mrcal_point3_t _m;
m.extract_value(_m.xyz);
if(_dm_dv0 != NULL)
m.extract_grad (_dm_dv0->xyz, 0,3, 0,
3*sizeof(double), sizeof(double),
3);
if(_dm_dv1 != NULL)
m.extract_grad (_dm_dv1->xyz, 3,3, 0,
3*sizeof(double), sizeof(double),
3);
if(_dm_dt01 != NULL)
m.extract_grad (_dm_dt01->xyz, 6,3,0,
3*sizeof(double), sizeof(double),
3);
return _m;
}
// This is called "cheirality" in Lee and Civera's papers
template <int NGRAD>
static bool chirality(// output
val_withgrad_t<NGRAD >& worsening0,
val_withgrad_t<NGRAD >& worsening1,
val_withgrad_t<NGRAD >& worsening01,
// input
const val_withgrad_t<NGRAD >& l0,
const vec_withgrad_t<NGRAD,3>& v0,
const val_withgrad_t<NGRAD >& l1,
const vec_withgrad_t<NGRAD,3>& v1,
const vec_withgrad_t<NGRAD,3>& t01)
{
// I'm looking at points in space l0*v0 and t01+l1*v1. These SHOULD estimate
// the SAME point p, so their difference should be small. I want to make
// sure I have the sign of l0 and l1 right. If flipping the sign on either
// of these makes the estimate of p tighter, I return false
// x are separations between l0*v0 and t01+l1*v1. These estimate the same
// point p, so x should be small
//
// worsening = norm2(xflip) - norm2(x). If l0 or l1 were flipped, and that
// created a tighter fit, I would see norm2(xflip)<norm2(x) and worsening<0
worsening0 = val_withgrad_t<NGRAD>();
worsening1 = val_withgrad_t<NGRAD>();
worsening01 = val_withgrad_t<NGRAD>();
for(int i=0; i<3; i++)
{
val_withgrad_t<NGRAD> x_nominal = ( l1*v1.v[i] + t01.v[i]) - l0*v0.v[i];
val_withgrad_t<NGRAD> x0 = ( l1*v1.v[i] + t01.v[i]) + l0*v0.v[i];
val_withgrad_t<NGRAD> x1 = (-l1*v1.v[i] + t01.v[i]) - l0*v0.v[i];
val_withgrad_t<NGRAD> x01 = (-l1*v1.v[i] + t01.v[i]) + l0*v0.v[i];
worsening0 += x0 *x0 - x_nominal*x_nominal;
worsening1 += x1 *x1 - x_nominal*x_nominal;
worsening01 += x01*x01 - x_nominal*x_nominal;
}
// if flipping l in ALL possible directions made the fit worse, then the
// current l is the best, and I return true
return
worsening0.x > 0.0 &&
worsening1.x > 0.0 &&
worsening01.x > 0.0;
}
// version without reporting the worsening values
template <int NGRAD>
static bool chirality(const val_withgrad_t<NGRAD >& l0,
const vec_withgrad_t<NGRAD,3>& v0,
const val_withgrad_t<NGRAD >& l1,
const vec_withgrad_t<NGRAD,3>& v1,
const vec_withgrad_t<NGRAD,3>& t01)
{
val_withgrad_t<NGRAD> worsening0;
val_withgrad_t<NGRAD> worsening1;
val_withgrad_t<NGRAD> worsening01;
return chirality(worsening0, worsening1, worsening01,
l0,v0,l1,v1,t01);
}
// The "Mid2" method in "Triangulation: Why Optimize?", Seong Hun Lee and Javier
// Civera. https://arxiv.org/abs/1907.11917
extern "C"
mrcal_point3_t
mrcal_triangulate_leecivera_mid2(// outputs
// These all may be NULL
mrcal_point3_t* _dm_dv0,
mrcal_point3_t* _dm_dv1,
mrcal_point3_t* _dm_dt01,
// inputs
// not-necessarily normalized vectors in the camera-0
// coord system
const mrcal_point3_t* _v0,
const mrcal_point3_t* _v1,
const mrcal_point3_t* _t01)
{
// The paper has m0, m1 as the cam1-frame observation vectors. I do
// everything in cam0-frame
vec_withgrad_t<9,3> v0 (_v0 ->xyz, 0);
vec_withgrad_t<9,3> v1 (_v1 ->xyz, 3);
vec_withgrad_t<9,3> t01(_t01->xyz, 6);
val_withgrad_t<9> p_norm2_recip = val_withgrad_t<9>(1.0) / cross_norm2<9>(v0, v1);
val_withgrad_t<9> l0 = (cross_norm2<9>(v1, t01) * p_norm2_recip).sqrt();
val_withgrad_t<9> l1 = (cross_norm2<9>(v0, t01) * p_norm2_recip).sqrt();
if(!chirality(l0, v0, l1, v1, t01))
return (mrcal_point3_t){0};
vec_withgrad_t<9,3> m = (v0*l0 + t01+v1*l1) / 2.0;
mrcal_point3_t _m;
m.extract_value(_m.xyz);
if(_dm_dv0 != NULL)
m.extract_grad (_dm_dv0->xyz, 0,3, 0,
3*sizeof(double), sizeof(double),
3);
if(_dm_dv1 != NULL)
m.extract_grad (_dm_dv1->xyz, 3,3, 0,
3*sizeof(double), sizeof(double),
3);
if(_dm_dt01 != NULL)
m.extract_grad (_dm_dt01->xyz, 6,3,0,
3*sizeof(double), sizeof(double),
3);
return _m;
}
extern "C"
bool
_mrcal_triangulate_leecivera_mid2_is_convergent(// inputs
// not-necessarily normalized vectors in the camera-0
// coord system
const mrcal_point3_t* _v0,
const mrcal_point3_t* _v1,
const mrcal_point3_t* _t01)
{
mrcal_point3_t p = mrcal_triangulate_leecivera_mid2(NULL,NULL,NULL,
_v0,_v1,_t01);
return !(p.x == 0.0 &&
p.y == 0.0 &&
p.z == 0.0);
}
// The "wMid2" method in "Triangulation: Why Optimize?", Seong Hun Lee and
// Javier Civera. https://arxiv.org/abs/1907.11917
extern "C"
mrcal_point3_t
mrcal_triangulate_leecivera_wmid2(// outputs
// These all may be NULL
mrcal_point3_t* _dm_dv0,
mrcal_point3_t* _dm_dv1,
mrcal_point3_t* _dm_dt01,
// inputs
// not-necessarily normalized vectors in the camera-0
// coord system
const mrcal_point3_t* _v0,
const mrcal_point3_t* _v1,
const mrcal_point3_t* _t01)
{
// The paper has m0, m1 as the cam1-frame observation vectors. I do
// everything in cam0-frame
vec_withgrad_t<9,3> v0 (_v0 ->xyz, 0);
vec_withgrad_t<9,3> v1 (_v1 ->xyz, 3);
vec_withgrad_t<9,3> t01(_t01->xyz, 6);
// Unlike Mid2 I need to normalize these here to make the math work. l0 and
// l1 now have units of m, and I weigh by 1/l0 and 1/l1
v0 /= v0.mag();
v1 /= v1.mag();
val_withgrad_t<9> p_mag_recip = val_withgrad_t<9>(1.0) / cross_mag<9>(v0, v1);
val_withgrad_t<9> l0 = cross_mag<9>(v1, t01) * p_mag_recip;
val_withgrad_t<9> l1 = cross_mag<9>(v0, t01) * p_mag_recip;
if(!chirality(l0, v0, l1, v1, t01))
return (mrcal_point3_t){0};
vec_withgrad_t<9,3> m = (v0*l0*l1 + t01*l0 + v1*l0*l1) / (l0 + l1);
mrcal_point3_t _m;
m.extract_value(_m.xyz);
if(_dm_dv0 != NULL)
m.extract_grad (_dm_dv0->xyz, 0,3, 0,
3*sizeof(double), sizeof(double),
3);
if(_dm_dv1 != NULL)
m.extract_grad (_dm_dv1->xyz, 3,3, 0,
3*sizeof(double), sizeof(double),
3);
if(_dm_dt01 != NULL)
m.extract_grad (_dm_dt01->xyz, 6,3,0,
3*sizeof(double), sizeof(double),
3);
return _m;
}
__attribute__((unused))
static
val_withgrad_t<6>
angle_error__assume_small(const vec_withgrad_t<6,3>& v0,
const vec_withgrad_t<6,3>& v1)
{
const val_withgrad_t<6> inner00 = v0.norm2();
const val_withgrad_t<6> inner11 = v1.norm2();
const val_withgrad_t<6> inner01 = v0.dot(v1);
val_withgrad_t<6> costh = inner01 / (inner00*inner11).sqrt();
if(costh.x < 0.0)
// Could happen with barely-divergent rays
costh *= val_withgrad_t<6>(-1.0);
// The angle is assumed small, so cos(th) ~ 1 - th*th/2.
// -> th ~ sqrt( 2*(1 - cos(th)) )
val_withgrad_t<6> th_sq = costh*(-2.) + 2.;
#if defined ENABLE_TRIANGULATED_WARNINGS && ENABLE_TRIANGULATED_WARNINGS
#warning "triangulated-solve: temporary hack to avoid dividing by 0"
#endif
if(th_sq.x < 1e-21)
{
return val_withgrad_t<6>();
}
if(th_sq.x < 0)
// To handle roundoff errors
th_sq.x = 0;
return th_sq.sqrt();
#if defined ENABLE_TRIANGULATED_WARNINGS && ENABLE_TRIANGULATED_WARNINGS
#warning "triangulated-solve: look at numerical issues that will results in sqrt(<0)"
#warning "triangulated-solve: look at behavior near 0 where dsqrt/dx -> inf"
#endif
}
__attribute__((unused))
static
val_withgrad_t<6>
angle_error__assume_small_arg0_normalized(const vec_withgrad_t<6,3>& v0,
const vec_withgrad_t<6,3>& p1)
{
const val_withgrad_t<6> inner11 = p1.norm2();
const val_withgrad_t<6> inner01 = v0.dot(p1);
val_withgrad_t<6> costh = inner01 / inner11.sqrt();
if(costh.x < 0.0)
// Could happen with barely-divergent rays
costh *= val_withgrad_t<6>(-1.0);
// The angle is assumed small, so cos(th) ~ 1 - th*th/2.
// -> th ~ sqrt( 2*(1 - cos(th)) )
val_withgrad_t<6> th_sq = costh*(-2.) + 2.;
#if defined ENABLE_TRIANGULATED_WARNINGS && ENABLE_TRIANGULATED_WARNINGS
#warning "triangulated-solve: temporary hack to avoid dividing by 0"
#endif
if(th_sq.x < 0)
// To handle roundoff errors
th_sq.x = 0;
return th_sq.sqrt();
#if defined ENABLE_TRIANGULATED_WARNINGS && ENABLE_TRIANGULATED_WARNINGS
#warning "triangulated-solve: look at numerical issues that will results in sqrt(<0)"
#warning "triangulated-solve: look at behavior near 0 where dsqrt/dx -> inf"
#endif
}
__attribute__((unused))
static
val_withgrad_t<6>
angle_error__assume_small_args_normalized(const vec_withgrad_t<6,3>& v0,
const vec_withgrad_t<6,3>& v1)
{
const val_withgrad_t<6> inner01 = v0.dot(v1);
val_withgrad_t<6> costh = inner01;
if(costh.x < 0.0)
// Could happen with barely-divergent rays
costh *= val_withgrad_t<6>(-1.0);
// The angle is assumed small, so cos(th) ~ 1 - th*th/2.
// -> th ~ sqrt( 2*(1 - cos(th)) )
val_withgrad_t<6> th_sq = costh*(-2.) + 2.;
#if defined ENABLE_TRIANGULATED_WARNINGS && ENABLE_TRIANGULATED_WARNINGS
#warning "triangulated-solve: temporary hack to avoid dividing by 0"
#endif
if(th_sq.x < 0)
// To handle roundoff errors
th_sq.x = 0;
return th_sq.sqrt();
#if defined ENABLE_TRIANGULATED_WARNINGS && ENABLE_TRIANGULATED_WARNINGS
#warning "triangulated-solve: look at numerical issues that will results in sqrt(<0)"
#warning "triangulated-solve: look at behavior near 0 where dsqrt/dx -> inf"
#endif
}
#if defined ENABLE_TRIANGULATED_WARNINGS && ENABLE_TRIANGULATED_WARNINGS
#warning "triangulated-solve: maybe exposing the triangulated-error C function is OK? I'm already exposing the Python function"
#endif
__attribute__((unused))
static
double relu(double x, double knee)
{
/* Smooth function ~ x>0 ? x : 0
Three modes
- x < 0: 0
- 0 < x < knee: k*x^2
- knee < x: x + eps
At the transitions I want the function and the first derivative
to be continuous. At the knee I want d/dx = 1. So 2*k*knee = 1 ->
k = 1/(2*knee). k * knee^2 = knee + eps -> eps = knee * (k*knee -
1) = -knee/2
*/
if(x <= 0) return 0.0;
if(knee <= x) return x - knee/2.0;
double k = 1. / (2*knee);
return k * x*x;
}
static
val_withgrad_t<6> sigmoid(val_withgrad_t<6> x, double knee)
{
/* Smooth function maps to 0..1
Modes
- x < 0: 0
- 0 < x < knee: smooth interpolation
- knee < x: 1
// If knee<=0 then we have a sharp transition at exactly x=0
*/
if(x.x <= 0 ) return 0.0;
if(knee <= x.x) return 1.0;
// transition at (x - knee/2.) < 0
// dx = x - knee/2; dx in [-knee/2, 0]
// f(dx) = a dx^2 + b dx + c
// f(dx = -knee/2.) = 0
// f(dx = 0) = 1/2
// f'(dx = -knee/2.) = 0
// -> c = 1/2
// -> b = 2/knee
// -> a = 2/(knee^2)
if(x.x < knee/2.0)
{
const double b = 2./knee;
const double a = 2./knee/knee;
const double c = 1./2.;
const val_withgrad_t<6> dx = x - knee/2.;
return dx*(dx*a + b) + c;
}
// transition at (x - knee/2.) > 0
// dx = x - knee/2; dx in [0, knee/2]
// f(dx) = a dx^2 + b dx + c
// f(dx = knee/2.) = 1
// f'(dx = knee/2.) = 0
// f(dx = 0) = 1/2
// -> c = 1/2
// -> b = 2/knee
// -> a = -2/(knee^2)
{
const double b = 2./knee;
const double a = -2./knee/knee;
const double c = 1./2.;
const val_withgrad_t<6> dx = x - knee/2.;
return dx*(dx*a + b) + c;
}
}
// Internal function used in the optimization. This uses
// mrcal_triangulate_leecivera_mid2(), but contains logic in the divergent-ray
// case more appropriate for the optimization loop
// No derr_dv0. Because normally I have v0 = unproject(q0), which doesn't depend
// on any extrinsics-only optimization quantities. I normally compute rt01 and
// then v1 = rotate(rt01,v1local) and I'd pass v1 and rt01[3:] to this function.
// So I need gradients for v1 and t01 only.
extern "C"
double
_mrcal_triangulated_error(// outputs
mrcal_point3_t* _derr_dv1,
mrcal_point3_t* _derr_dt01,
// inputs
// not-necessarily normalized vectors in the camera-0
// coord system
const mrcal_point3_t* _v0,
const mrcal_point3_t* _v1,
const mrcal_point3_t* _t01)
{
////////////////////////// Copy of mrcal_triangulate_leecivera_mid2(). I
////////////////////////// extend it
// Implementation here is a bit different: I don't propagate the gradient in
// respect to v0
// The paper has m0, m1 as the cam1-frame observation vectors. I do
// everything in cam0-frame
vec_withgrad_t<6,3> v0 (_v0 ->xyz, -1); // No gradient. Hopefully the
// compiler will collapse this
// aggressively
vec_withgrad_t<6,3> v1 (_v1 ->xyz, 0);
vec_withgrad_t<6,3> t01(_t01->xyz, 3);
val_withgrad_t<6> p_norm2_recip = val_withgrad_t<6>(1.0) / cross_norm2<6>(v0, v1);
val_withgrad_t<6> l0 = (cross_norm2<6>(v1, t01) * p_norm2_recip).sqrt();
val_withgrad_t<6> l1 = (cross_norm2<6>(v0, t01) * p_norm2_recip).sqrt();
vec_withgrad_t<6,3> m = (v0*l0 + t01+v1*l1) / 2.0;
// I compute the angle between the triangulated point and one of the
// observation rays, and I double this to measure from ray to ray
// This is a fit error, which should be small. A small-angle cos()
// approximation is valid, unless the models don't fit at all. In which
// case a cos() error is the least of our issues
val_withgrad_t<6> err = angle_error__assume_small( v0, m ) * 2.;
#if defined ENABLE_TRIANGULATED_WARNINGS && ENABLE_TRIANGULATED_WARNINGS
#warning "triangulated-solve: what happens when the rays are exactly parallel? Make sure the numerics remain happy. They don't: I divide by cross(v0,v1) ~ 0"
#endif
#if 0
// original method
if(!chirality(l0, v0, l1, v1, t01))
{
// The rays diverge. This is aphysical, but an incorrect (i.e.
// not-yet-converged) geometry can cause this. Even if the optimization
// has converged, this can still happen if pixel noise or an incorrect
// feature association bumped converging rays to diverge.
//
// An obvious thing do wo would be to return the distance to the
// vanishing point. This creates a yaw bias however: barely convergent
// rays have zero effect on yaw, but barely divergent rays have a strong
// effect on yaw
//
// Goals:
//
// - There should be no qualitative change in the cost function as rays
// cross over from convergent to divergent. Low-error, parallel-ish
// rays look out to infinity, which means that these define yaw very
// poorly, and would affect the pitch, roll only. Yaw is what controls
// divergence, so if random noise makes rays diverge, we should use
// the error as before, to set our pitch, roll
//
// - Very divergent rays are bogus, and I do apply a penalty factor
// based on the divergence. This penalty factor begins to kick in only
// past a certain point, so there's no effect at the transition. This
// transition point should be connected to the outlier rejection
// threshold.
val_withgrad_t<6> err_to_vanishing_point = angle_error__assume_small(v0, v1);
// I have three modes:
//
// - err_to_vanishing_point < THRESHOLD_DIVERGENT_LOWER
// I attribute the error to random noise, and simply report the
// reprojection error as before, ignoring the divergence. This will
// barely affect the yaw, but will pull the pitch and roll in the
// desired directions
//
// - err_to_vanishing_point > THRESHOLD_DIVERGENT_UPPER
// I add a term to pull the observation towards the vanishing point.
// This affects the yaw primarily, and does not touch the pitch and
// roll very much, since I don't have reliable information about them
// here
//
// - err_to_vanishing_point between THRESHOLD_DIVERGENT_LOWER and _UPPER
// I linearly the scale on this divergence term from 0 to 1
#if defined ENABLE_TRIANGULATED_WARNINGS && ENABLE_TRIANGULATED_WARNINGS
#warning "triangulated-solve: set reasonable thresholds"
#endif
#define THRESHOLD_DIVERGENT_LOWER 3.0e-4
#define THRESHOLD_DIVERGENT_UPPER 6.0e-4
if(err_to_vanishing_point.x <= THRESHOLD_DIVERGENT_LOWER)
{
// We're barely divergent. Just do the normal thing
}
else if(err_to_vanishing_point.x >= THRESHOLD_DIVERGENT_UPPER)
{
// we're VERY divergent. Add another cost term:
// the distance to the vanishing point
#if defined ENABLE_TRIANGULATED_WARNINGS && ENABLE_TRIANGULATED_WARNINGS
#warning "triangulated-solve: temporary testing logic"
#endif
#if defined DIVERGENT_COST_ONLY && DIVERGENT_COST_ONLY
err = err_to_vanishing_point;
#else
err += err_to_vanishing_point;
#endif
err.x += 200.0;
}
else
{
// linearly interpolate. As
// err_to_vanishing_point lower->upper we
// produce k 0->1
val_withgrad_t<6> k =
(err_to_vanishing_point - THRESHOLD_DIVERGENT_LOWER) /
(THRESHOLD_DIVERGENT_UPPER - THRESHOLD_DIVERGENT_LOWER);
#if defined ENABLE_TRIANGULATED_WARNINGS && ENABLE_TRIANGULATED_WARNINGS
#warning "triangulated-solve: temporary testing logic"
#endif
#if defined DIVERGENT_COST_ONLY && DIVERGENT_COST_ONLY
err = k*err_to_vanishing_point + (val_withgrad_t<6>(1.0)-k)*err;
#else
err += k*err_to_vanishing_point;
#endif
err.x += 100.0;
}
}
#else
// new method
val_withgrad_t<6> worsening0;
val_withgrad_t<6> worsening1;
val_withgrad_t<6> worsening01;
if(!chirality(worsening0, worsening1, worsening01,
l0, v0, l1, v1, t01))
{
val_withgrad_t<6> err_to_vanishing_point = angle_error__assume_small(v0, v1);
err +=
err_to_vanishing_point * (sigmoid(-worsening0, 3.0) +
sigmoid(-worsening1, 3.0) +
sigmoid(-worsening01, 3.0));
}
#endif
if(_derr_dv1 != NULL)
for(int i=0; i<3; i++)
_derr_dv1->xyz[i] = err.j[0 + i];
if(_derr_dt01 != NULL)
for(int i=0; i<3; i++)
_derr_dt01->xyz[i] = err.j[3 + i];
return err.x;
}
|