File: triangulation.h

package info (click to toggle)
mrcal 2.5-2
  • links: PTS, VCS
  • area: main
  • in suites:
  • size: 8,560 kB
  • sloc: python: 40,604; ansic: 15,576; cpp: 1,754; perl: 303; makefile: 158; sh: 98; lisp: 84
file content (166 lines) | stat: -rw-r--r-- 7,271 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
// Copyright (c) 2017-2023 California Institute of Technology ("Caltech"). U.S.
// Government sponsorship acknowledged. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0

#pragma once

#ifdef __cplusplus
extern "C" {
#endif


#include "basic-geometry.h"

// All of these return (0,0,0) if the rays are parallel or divergent, or if the
// intersection is behind either of the two cameras. No gradients are reported
// in that case

// Basic closest-approach-in-3D routine. This is the "Mid" method in
// "Triangulation: Why Optimize?", Seong Hun Lee and Javier Civera
// https://arxiv.org/abs/1907.11917
mrcal_point3_t
mrcal_triangulate_geometric(// outputs
                            // These all may be NULL
                            mrcal_point3_t* dm_dv0,
                            mrcal_point3_t* dm_dv1,
                            mrcal_point3_t* dm_dt01,

                            // inputs

                            // not-necessarily normalized vectors in the camera-0
                            // coord system
                            const mrcal_point3_t* v0,
                            const mrcal_point3_t* v1,
                            const mrcal_point3_t* t01);

// Minimize L2 pinhole reprojection error. Described in "Triangulation Made
// Easy", Peter Lindstrom, IEEE Conference on Computer Vision and Pattern
// Recognition, 2010. This is the "L2 img 5-iteration" method (but with only 2
// iterations) in "Triangulation: Why Optimize?", Seong Hun Lee and Javier
// Civera. https://arxiv.org/abs/1907.11917
// Lindstrom's paper recommends 2 iterations
mrcal_point3_t
mrcal_triangulate_lindstrom(// outputs
                            // These all may be NULL
                            mrcal_point3_t* dm_dv0,
                            mrcal_point3_t* dm_dv1,
                            mrcal_point3_t* dm_dRt01,

                            // inputs

                            // not-necessarily normalized vectors in the LOCAL
                            // coordinate system. This is different from the other
                            // triangulation routines
                            const mrcal_point3_t* v0_local,
                            const mrcal_point3_t* v1_local,
                            const mrcal_point3_t* Rt01);

// Minimize L1 angle error. Described in "Closed-Form Optimal Two-View
// Triangulation Based on Angular Errors", Seong Hun Lee and Javier Civera. ICCV
// 2019. This is the "L1 ang" method in "Triangulation: Why Optimize?", Seong
// Hun Lee and Javier Civera. https://arxiv.org/abs/1907.11917
mrcal_point3_t
mrcal_triangulate_leecivera_l1(// outputs
                               // These all may be NULL
                               mrcal_point3_t* dm_dv0,
                               mrcal_point3_t* dm_dv1,
                               mrcal_point3_t* dm_dt01,

                               // inputs

                               // not-necessarily normalized vectors in the camera-0
                               // coord system
                               const mrcal_point3_t* v0,
                               const mrcal_point3_t* v1,
                               const mrcal_point3_t* t01);

// Minimize L-infinity angle error. Described in "Closed-Form Optimal Two-View
// Triangulation Based on Angular Errors", Seong Hun Lee and Javier Civera. ICCV
// 2019. This is the "L-infinity ang" method in "Triangulation: Why Optimize?",
// Seong Hun Lee and Javier Civera. https://arxiv.org/abs/1907.11917
mrcal_point3_t
mrcal_triangulate_leecivera_linf(// outputs
                                 // These all may be NULL
                                 mrcal_point3_t* dm_dv0,
                                 mrcal_point3_t* dm_dv1,
                                 mrcal_point3_t* dm_dt01,

                                 // inputs

                                 // not-necessarily normalized vectors in the camera-0
                                 // coord system
                                 const mrcal_point3_t* v0,
                                 const mrcal_point3_t* v1,
                                 const mrcal_point3_t* t01);

// The "Mid2" method in "Triangulation: Why Optimize?", Seong Hun Lee and Javier
// Civera. https://arxiv.org/abs/1907.11917
mrcal_point3_t
mrcal_triangulate_leecivera_mid2(// outputs
                                 // These all may be NULL
                                 mrcal_point3_t* dm_dv0,
                                 mrcal_point3_t* dm_dv1,
                                 mrcal_point3_t* dm_dt01,

                                 // inputs

                                 // not-necessarily normalized vectors in the camera-0
                                 // coord system
                                 const mrcal_point3_t* v0,
                                 const mrcal_point3_t* v1,
                                 const mrcal_point3_t* t01);

// The "wMid2" method in "Triangulation: Why Optimize?", Seong Hun Lee and Javier
// Civera. https://arxiv.org/abs/1907.11917
mrcal_point3_t
mrcal_triangulate_leecivera_wmid2(// outputs
                                  // These all may be NULL
                                  mrcal_point3_t* dm_dv0,
                                  mrcal_point3_t* dm_dv1,
                                  mrcal_point3_t* dm_dt01,

                                  // inputs

                                  // not-necessarily normalized vectors in the camera-0
                                  // coord system
                                  const mrcal_point3_t* v0,
                                  const mrcal_point3_t* v1,
                                  const mrcal_point3_t* t01);

// I don't implement triangulate_leecivera_l2() yet because it requires
// computing an SVD, which is far slower than what the rest of these functions
// do

// No derr_dv0. Because normally I have v0 = unproject(q0), which doesn't depend
// on any extrinsics-only optimization quantities. I normally compute rt01 and
// then v1 = rotate(rt01,v1local) and I'd pass v1 and rt01[3:] to this function.
// So I need gradients for v1 and t01 only.
double
_mrcal_triangulated_error(// outputs
                          mrcal_point3_t* _derr_dv1,
                          mrcal_point3_t* _derr_dt01,

                          // inputs

                          // not-necessarily normalized vectors in the camera-0
                          // coord system
                          const mrcal_point3_t* _v0,
                          const mrcal_point3_t* _v1,
                          const mrcal_point3_t* _t01);

bool
_mrcal_triangulate_leecivera_mid2_is_convergent(// inputs

                                                // not-necessarily normalized vectors in the camera-0
                                                // coord system
                                                const mrcal_point3_t* _v0,
                                                const mrcal_point3_t* _v1,
                                                const mrcal_point3_t* _t01);

#ifdef __cplusplus
}
#endif