1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
|
// Copyright (c) 2017-2023 California Institute of Technology ("Caltech"). U.S.
// Government sponsorship acknowledged. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
#pragma once
#ifdef __cplusplus
extern "C" {
#endif
#include "basic-geometry.h"
// All of these return (0,0,0) if the rays are parallel or divergent, or if the
// intersection is behind either of the two cameras. No gradients are reported
// in that case
// Basic closest-approach-in-3D routine. This is the "Mid" method in
// "Triangulation: Why Optimize?", Seong Hun Lee and Javier Civera
// https://arxiv.org/abs/1907.11917
mrcal_point3_t
mrcal_triangulate_geometric(// outputs
// These all may be NULL
mrcal_point3_t* dm_dv0,
mrcal_point3_t* dm_dv1,
mrcal_point3_t* dm_dt01,
// inputs
// not-necessarily normalized vectors in the camera-0
// coord system
const mrcal_point3_t* v0,
const mrcal_point3_t* v1,
const mrcal_point3_t* t01);
// Minimize L2 pinhole reprojection error. Described in "Triangulation Made
// Easy", Peter Lindstrom, IEEE Conference on Computer Vision and Pattern
// Recognition, 2010. This is the "L2 img 5-iteration" method (but with only 2
// iterations) in "Triangulation: Why Optimize?", Seong Hun Lee and Javier
// Civera. https://arxiv.org/abs/1907.11917
// Lindstrom's paper recommends 2 iterations
mrcal_point3_t
mrcal_triangulate_lindstrom(// outputs
// These all may be NULL
mrcal_point3_t* dm_dv0,
mrcal_point3_t* dm_dv1,
mrcal_point3_t* dm_dRt01,
// inputs
// not-necessarily normalized vectors in the LOCAL
// coordinate system. This is different from the other
// triangulation routines
const mrcal_point3_t* v0_local,
const mrcal_point3_t* v1_local,
const mrcal_point3_t* Rt01);
// Minimize L1 angle error. Described in "Closed-Form Optimal Two-View
// Triangulation Based on Angular Errors", Seong Hun Lee and Javier Civera. ICCV
// 2019. This is the "L1 ang" method in "Triangulation: Why Optimize?", Seong
// Hun Lee and Javier Civera. https://arxiv.org/abs/1907.11917
mrcal_point3_t
mrcal_triangulate_leecivera_l1(// outputs
// These all may be NULL
mrcal_point3_t* dm_dv0,
mrcal_point3_t* dm_dv1,
mrcal_point3_t* dm_dt01,
// inputs
// not-necessarily normalized vectors in the camera-0
// coord system
const mrcal_point3_t* v0,
const mrcal_point3_t* v1,
const mrcal_point3_t* t01);
// Minimize L-infinity angle error. Described in "Closed-Form Optimal Two-View
// Triangulation Based on Angular Errors", Seong Hun Lee and Javier Civera. ICCV
// 2019. This is the "L-infinity ang" method in "Triangulation: Why Optimize?",
// Seong Hun Lee and Javier Civera. https://arxiv.org/abs/1907.11917
mrcal_point3_t
mrcal_triangulate_leecivera_linf(// outputs
// These all may be NULL
mrcal_point3_t* dm_dv0,
mrcal_point3_t* dm_dv1,
mrcal_point3_t* dm_dt01,
// inputs
// not-necessarily normalized vectors in the camera-0
// coord system
const mrcal_point3_t* v0,
const mrcal_point3_t* v1,
const mrcal_point3_t* t01);
// The "Mid2" method in "Triangulation: Why Optimize?", Seong Hun Lee and Javier
// Civera. https://arxiv.org/abs/1907.11917
mrcal_point3_t
mrcal_triangulate_leecivera_mid2(// outputs
// These all may be NULL
mrcal_point3_t* dm_dv0,
mrcal_point3_t* dm_dv1,
mrcal_point3_t* dm_dt01,
// inputs
// not-necessarily normalized vectors in the camera-0
// coord system
const mrcal_point3_t* v0,
const mrcal_point3_t* v1,
const mrcal_point3_t* t01);
// The "wMid2" method in "Triangulation: Why Optimize?", Seong Hun Lee and Javier
// Civera. https://arxiv.org/abs/1907.11917
mrcal_point3_t
mrcal_triangulate_leecivera_wmid2(// outputs
// These all may be NULL
mrcal_point3_t* dm_dv0,
mrcal_point3_t* dm_dv1,
mrcal_point3_t* dm_dt01,
// inputs
// not-necessarily normalized vectors in the camera-0
// coord system
const mrcal_point3_t* v0,
const mrcal_point3_t* v1,
const mrcal_point3_t* t01);
// I don't implement triangulate_leecivera_l2() yet because it requires
// computing an SVD, which is far slower than what the rest of these functions
// do
// No derr_dv0. Because normally I have v0 = unproject(q0), which doesn't depend
// on any extrinsics-only optimization quantities. I normally compute rt01 and
// then v1 = rotate(rt01,v1local) and I'd pass v1 and rt01[3:] to this function.
// So I need gradients for v1 and t01 only.
double
_mrcal_triangulated_error(// outputs
mrcal_point3_t* _derr_dv1,
mrcal_point3_t* _derr_dt01,
// inputs
// not-necessarily normalized vectors in the camera-0
// coord system
const mrcal_point3_t* _v0,
const mrcal_point3_t* _v1,
const mrcal_point3_t* _t01);
bool
_mrcal_triangulate_leecivera_mid2_is_convergent(// inputs
// not-necessarily normalized vectors in the camera-0
// coord system
const mrcal_point3_t* _v0,
const mrcal_point3_t* _v1,
const mrcal_point3_t* _t01);
#ifdef __cplusplus
}
#endif
|