File: test-basic-calibration.py

package info (click to toggle)
mrcal 2.5-3
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 8,992 kB
  • sloc: python: 40,651; ansic: 15,632; cpp: 1,754; perl: 303; makefile: 160; sh: 99; lisp: 84
file content (386 lines) | stat: -rwxr-xr-x 17,620 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
#!/usr/bin/env python3

r'''Basic camera-calibration test

I observe, with noise, a number of chessboards from various angles with several
cameras. And I make sure that I can more or less compute the camera intrinsics
and extrinsics

'''

import sys
import numpy as np
import numpysane as nps
import os

testdir = os.path.dirname(os.path.realpath(__file__))

# I import the LOCAL mrcal since that's what I'm testing
sys.path[:0] = f"{testdir}/..",
import mrcal
import testutils

from test_calibration_helpers import sample_dqref
import copy

# I want the RNG to be deterministic
np.random.seed(0)

############# Set up my world, and compute all the perfect positions, pixel
############# observations of everything
models_ref = ( mrcal.cameramodel(f"{testdir}/data/cam0.opencv8.cameramodel"),
               mrcal.cameramodel(f"{testdir}/data/cam0.opencv8.cameramodel"),
               mrcal.cameramodel(f"{testdir}/data/cam1.opencv8.cameramodel"),
               mrcal.cameramodel(f"{testdir}/data/cam1.opencv8.cameramodel") )

imagersizes = nps.cat( *[m.imagersize() for m in models_ref] )
lensmodel   = models_ref[0].intrinsics()[0]
# I have opencv8 models_ref, but let me truncate to opencv4 models_ref to keep this
# simple and fast
lensmodel = 'LENSMODEL_OPENCV4'
for m in models_ref:
    m.intrinsics( intrinsics = (lensmodel, m.intrinsics()[1][:8]))
Nintrinsics = mrcal.lensmodel_num_params(lensmodel)

Ncameras = len(models_ref)
Nframes  = 50

models_ref[0].rt_cam_ref(np.zeros((6,), dtype=float))
models_ref[1].rt_cam_ref(np.array((0.08,0.2,0.02, 1., 0.9,0.1)))
models_ref[2].rt_cam_ref(np.array((0.01,0.07,0.2, 2.1,0.4,0.2)))
models_ref[3].rt_cam_ref(np.array((-0.1,0.08,0.08, 4.4,0.2,0.1)))


pixel_uncertainty_stdev = 1.5
object_spacing          = 0.1
object_width_n          = 10
object_height_n         = 9
calobject_warp_ref      = np.array((0.002, -0.005))

# shapes (Nframes, Ncameras, Nh, Nw, 2),
#        (Nframes, 4,3)
q_ref,Rt_ref_board_ref = \
    mrcal.synthesize_board_observations(models_ref,
                                        object_width_n                  = object_width_n,
                                        object_height_n                 = object_height_n,
                                        object_spacing                  = object_spacing,
                                        calobject_warp                  = calobject_warp_ref,
                                        rt_ref_boardcenter              = np.array((0.,  0.,  0., -2,   0,  4.0)),
                                        rt_ref_boardcenter__noiseradius = np.array((np.pi/180.*30., np.pi/180.*30., np.pi/180.*20., 2.5, 2.5, 2.0)),
                                        Nframes                         = Nframes)
frames_ref = mrcal.rt_from_Rt(Rt_ref_board_ref)

############# I have perfect observations in q_ref. I corrupt them by noise
# weight has shape (Nframes, Ncameras, Nh, Nw),
weight01 = (np.random.rand(*q_ref.shape[:-1]) + 1.) / 2. # in [0,1]
weight0 = 0.2
weight1 = 1.0
weight = weight0 + (weight1-weight0)*weight01

# I want observations of shape (Nframes*Ncameras, Nh, Nw, 3) where each row is
# (x,y,weight)
observations_ref = nps.clump( nps.glue(q_ref,
                                       nps.dummy(weight,-1),
                                       axis=-1),
                              n=2)

q_noise,observations = sample_dqref(observations_ref,
                                    pixel_uncertainty_stdev,
                                    make_outliers = True)

# Now I make some of the observations bogus, and mark them as input outliers.
# The solve should be robust to that, but any code that uses the bogus data
# DESPITE it being marked as bogus will generate a test failure
#
# Let's pretend the center of the chessboard has an apriltag, so all those
# observations are bogus. I block out a 5x5 chunk in the center
i0 = object_height_n//2
j0 = object_width_n//2
observations[..., i0-2:i0+3,j0-2:j0+3, 2] = -1.    # weight<=0: outlier
observations[..., i0-2:i0+3,j0-2:j0+3,:2] = -100.0 # all the values are bogus

############# Now I pretend that the noisy observations are all I got, and I run
############# a calibration from those

# Dense observations. All the cameras see all the boards
indices_frame_camera = np.zeros( (Nframes*Ncameras, 2), dtype=np.int32)
indices_frame = indices_frame_camera[:,0].reshape(Nframes,Ncameras)
indices_frame.setfield(nps.outer(np.arange(Nframes, dtype=np.int32),
                                 np.ones((Ncameras,), dtype=np.int32)),
                       dtype = np.int32)
indices_camera = indices_frame_camera[:,1].reshape(Nframes,Ncameras)
indices_camera.setfield(nps.outer(np.ones((Nframes,), dtype=np.int32),
                                 np.arange(Ncameras, dtype=np.int32)),
                       dtype = np.int32)

indices_frame_camintrinsics_camextrinsics = \
    nps.glue(indices_frame_camera,
             indices_frame_camera[:,(1,)]-1,
             axis=-1)


intrinsics_data,rt_cam_ref,rt_ref_frame = \
    mrcal.seed_stereographic(imagersizes          = imagersizes,
                             focal_estimate       = 1500,
                             indices_frame_camera = indices_frame_camera,
                             observations         = observations,
                             object_spacing       = object_spacing)

# I have a stereographic intrinsics estimate. Mount it into a full distortiony
# model, seeded with random numbers
intrinsics = np.zeros((Ncameras,Nintrinsics), dtype=float)
intrinsics[:,:4] = intrinsics_data
intrinsics[:,4:] = np.random.random( (Ncameras, intrinsics.shape[1]-4) ) * 1e-6

optimization_inputs = \
    dict( intrinsics                                = intrinsics,
          rt_cam_ref                                = rt_cam_ref,
          rt_ref_frame                              = rt_ref_frame,
          points                                    = None,
          observations_board                        = observations,
          indices_frame_camintrinsics_camextrinsics = indices_frame_camintrinsics_camextrinsics,
          observations_point                        = None,
          indices_point_camintrinsics_camextrinsics = None,
          lensmodel                                 = lensmodel,
          calobject_warp                            = None,
          imagersizes                               = imagersizes,
          calibration_object_spacing                = object_spacing,
          verbose                                   = False,
          do_apply_regularization                   = True)

# Solve this thing incrementally
optimization_inputs['do_optimize_intrinsics_core']        = False
optimization_inputs['do_optimize_intrinsics_distortions'] = False
optimization_inputs['do_optimize_extrinsics']             = True
optimization_inputs['do_optimize_frames']                 = True
optimization_inputs['do_optimize_calobject_warp']         = False
mrcal.optimize(**optimization_inputs,
               do_apply_outlier_rejection = True)

optimization_inputs['do_optimize_intrinsics_core']        = True
optimization_inputs['do_optimize_intrinsics_distortions'] = False
optimization_inputs['do_optimize_extrinsics']             = True
optimization_inputs['do_optimize_frames']                 = True
optimization_inputs['do_optimize_calobject_warp']         = False
mrcal.optimize(**optimization_inputs,
               do_apply_outlier_rejection = True)

testutils.confirm_equal( mrcal.num_states(**optimization_inputs),
                         4*Ncameras + 6*(Ncameras-1) + 6*Nframes,
                         msg="num_states()")
testutils.confirm_equal( mrcal.num_states_intrinsics(**optimization_inputs),
                         4*Ncameras,
                         msg="num_states_intrinsics()")
testutils.confirm_equal( mrcal.num_intrinsics_optimization_params(**optimization_inputs),
                         4,
                         msg="num_intrinsics_optimization_params()")
testutils.confirm_equal( mrcal.num_states_extrinsics(**optimization_inputs),
                         6*(Ncameras-1),
                         msg="num_states_extrinsics()")
testutils.confirm_equal( mrcal.num_states_frames(**optimization_inputs),
                         6*Nframes,
                         msg="num_states_frames()")
testutils.confirm_equal( mrcal.num_states_points(**optimization_inputs),
                         0,
                         msg="num_states_points()")
testutils.confirm_equal( mrcal.num_states_calobject_warp(**optimization_inputs),
                         0,
                         msg="num_states_calobject_warp()")

testutils.confirm_equal( mrcal.num_measurements_boards(**optimization_inputs),
                         object_width_n*object_height_n*2*Nframes*Ncameras,
                         msg="num_measurements_boards()")
testutils.confirm_equal( mrcal.num_measurements_points(**optimization_inputs),
                         0,
                         msg="num_measurements_points()")
testutils.confirm_equal( mrcal.num_measurements_regularization(**optimization_inputs),
                         Ncameras * 2,
                         msg="num_measurements_regularization()")


optimization_inputs['do_optimize_intrinsics_core']        = True
optimization_inputs['do_optimize_intrinsics_distortions'] = True
optimization_inputs['do_optimize_extrinsics']             = True
optimization_inputs['do_optimize_frames']                 = True
optimization_inputs['do_optimize_calobject_warp']         = True

optimization_inputs['calobject_warp'] = np.array((0.001, 0.001))
stats = mrcal.optimize(**optimization_inputs,
                       do_apply_outlier_rejection = True)

rmserr = stats['rms_reproj_error__pixels']


testutils.confirm_equal( mrcal.state_index_intrinsics(2, **optimization_inputs),
                         8*2,
                         msg="state_index_intrinsics()")
testutils.confirm_equal( mrcal.state_index_extrinsics(2, **optimization_inputs),
                         8*Ncameras + 6*2,
                         msg="state_index_extrinsics()")
testutils.confirm_equal( mrcal.state_index_frames(2, **optimization_inputs),
                         8*Ncameras + 6*(Ncameras-1) + 6*2,
                         msg="state_index_frames()")
testutils.confirm_equal( mrcal.state_index_calobject_warp(**optimization_inputs),
                         8*Ncameras + 6*(Ncameras-1) + 6*Nframes,
                         msg="state_index_calobject_warp()")

testutils.confirm_equal( mrcal.measurement_index_boards(2, **optimization_inputs),
                         object_width_n*object_height_n*2* 2,
                         msg="measurement_index_boards()")
testutils.confirm_equal( mrcal.measurement_index_regularization(**optimization_inputs),
                         object_width_n*object_height_n*2*Nframes*Ncameras,
                         msg="measurement_index_regularization()")


############# Calibration computed. Now I see how well I did
models_solved = \
    [ mrcal.cameramodel( optimization_inputs = optimization_inputs,
                         icam_intrinsics     = i )
      for i in range(Ncameras)]

if False:
    for i in range(0,Ncameras):
        f = f'/tmp/tst{i}.cameramodel'
        models_solved[i].write(f)
        print(f"Wrote '{f}'")

testutils.confirm_equal(rmserr, 0,
                        eps = 2.5,
                        msg = "Converged to a low RMS error")

testutils.confirm_equal( optimization_inputs['calobject_warp'],
                         calobject_warp_ref,
                         eps = 2e-3,
                         msg = "Recovered the calibration object shape" )

testutils.confirm_equal( np.std( mrcal.measurements_board(optimization_inputs,
                                                          x = stats['x'])),
                         pixel_uncertainty_stdev,
                         eps = pixel_uncertainty_stdev*0.1,
                         msg = "Residual have the expected distribution" )

# Checking the extrinsics. These aren't defined absolutely: each solve is free
# to put the observed frames anywhere it likes. The projection-diff code
# computes a transformation to address this. Here I simply look at the relative
# transformations between cameras, which would cancel out any extra
# transformations, AND since camera0 is fixed at the identity transformation, I
# can simply look at each extrinsics transformation.
for icam in range(1,len(models_ref)):

    Rt_extrinsics_err = \
        mrcal.compose_Rt( models_solved[icam].Rt_cam_ref(),
                          models_ref   [icam].Rt_ref_cam() )

    testutils.confirm_equal( nps.mag(Rt_extrinsics_err[3,:]),
                             0.0,
                             eps = 0.05,
                             msg = f"Recovered extrinsic translation for camera {icam}")

    testutils.confirm_equal( (np.trace(Rt_extrinsics_err[:3,:]) - 1) / 2.,
                             1.0,
                             eps = np.cos(1. * np.pi/180.0), # 1 deg
                             msg = f"Recovered extrinsic rotation for camera {icam}")

Rt_frame_err = \
    mrcal.compose_Rt( mrcal.Rt_from_rt(optimization_inputs['rt_ref_frame']),
                      mrcal.invert_Rt(Rt_ref_board_ref) )

testutils.confirm_equal( np.max(nps.mag(Rt_frame_err[..., 3,:])),
                         0.0,
                         eps = 0.08,
                         msg = "Recovered frame translation")
testutils.confirm_equal( np.min( (nps.trace(Rt_frame_err[..., :3,:]) - 1)/2. ),
                         1.0,
                         eps = np.cos(1. * np.pi/180.0), # 1 deg
                         msg = "Recovered frame rotation")


# Checking the intrinsics. Each intrinsics vector encodes an implicit
# transformation. I compute and apply this transformation when making my
# intrinsics comparisons. I make sure that within some distance of the pixel
# center, the projections match up to within some number of pixels
Nw = 60
def projection_diff(models_ref, max_dist_from_center):
    lensmodels      = [model.intrinsics()[0] for model in models_ref]
    intrinsics_data = [model.intrinsics()[1] for model in models_ref]

    # v  shape (...,Ncameras,Nheight,Nwidth,...)
    # q0 shape (...,         Nheight,Nwidth,...)
    v,q0 = \
        mrcal.sample_imager_unproject(Nw,None,
                                      *imagersizes[0],
                                      lensmodels, intrinsics_data,
                                      normalize = True)

    W,H = imagersizes[0]
    focus_center = None
    focus_radius = -1
    if focus_center is None: focus_center = ((W-1.)/2., (H-1.)/2.)
    if focus_radius < 0:     focus_radius = min(W,H)/6.


    implied_Rt10 = \
        mrcal.implied_Rt10__from_unprojections(q0,
                                               v[0,...], v[1,...],
                                               focus_center = focus_center,
                                               focus_radius = focus_radius)

    q1 = mrcal.project( mrcal.transform_point_Rt(implied_Rt10,
                                                 v[0,...]),
                       lensmodels[1], intrinsics_data[1])
    diff = nps.mag(q1 - q0)

    # zero-out everything too far from the center
    center = (imagersizes[0] - 1.) / 2.
    diff[ nps.norm2(q0 - center) > max_dist_from_center*max_dist_from_center ] = 0
    # gp.plot(diff,
    #         ascii = True,
    #         using = mrcal.imagergrid_using(imagersizes[0], Nw),
    #         square=1, _with='image', tuplesize=3, hardcopy='/tmp/yes.gp', cbmax=3)

    return diff


for icam in range(len(models_ref)):
    diff = projection_diff( (models_ref[icam], models_solved[icam]), 800)

    testutils.confirm_equal(diff, 0,
                            worstcase = True,
                            eps = 6.,
                            msg = f"Recovered intrinsics for camera {icam}")


# It would be nice to check the outlier detections, but this is iffy. Here I'm
# generating 1% outliers (hard-coded in sample_dqref()), but the outlier
# rejection is overly aggressive. I'm currently seeing 4.4%:
#
#   np.count_nonzero(observations[...,2]<=0) / observations[...,0].ravel().size
#
# The outlier rejection scheme just cuts out 3sigma residuals and above, so it's
# not great. I'm not entirely sure why it's over-reporting the outliers here,
# but I should investigate that at the same time as I overhaul the outlier
# rejection scheme (presumably to use one of my flavors of Cook's D factor)

# I test make_perfect_observations(). Doing it here is easy; doing it elsewhere
# it much more work
if True:
    optimization_inputs_perfect = copy.deepcopy(optimization_inputs)

    mrcal.make_perfect_observations(optimization_inputs_perfect,
                                    observed_pixel_uncertainty=0)
    x = mrcal.optimizer_callback(**optimization_inputs_perfect,
                                 no_jacobian      = True,
                                 no_factorization = True)[1]

    Nmeas = mrcal.num_measurements_boards(**optimization_inputs_perfect)
    if Nmeas > 0:
        i_meas0 = mrcal.measurement_index_boards(0, **optimization_inputs_perfect)
        testutils.confirm_equal( x[i_meas0:i_meas0+Nmeas],
                                 0,
                                 worstcase = True,
                                 eps = 1e-8,
                                 msg = f"make_perfect_observations() works for boards")
    else:
        testutils.confirm( False,
                           msg = f"Nmeasurements_boards <= 0")
testutils.finish()