1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
|
#!/usr/bin/env python3
r'''Basic camera-calibration test
I observe, with noise, a number of chessboards from various angles with several
cameras. And I make sure that I can more or less compute the camera intrinsics
and extrinsics
'''
import sys
import numpy as np
import numpysane as nps
import os
testdir = os.path.dirname(os.path.realpath(__file__))
# I import the LOCAL mrcal since that's what I'm testing
sys.path[:0] = f"{testdir}/..",
import mrcal
import testutils
from test_calibration_helpers import sample_dqref
import copy
# I want the RNG to be deterministic
np.random.seed(0)
############# Set up my world, and compute all the perfect positions, pixel
############# observations of everything
models_ref = ( mrcal.cameramodel(f"{testdir}/data/cam0.opencv8.cameramodel"),
mrcal.cameramodel(f"{testdir}/data/cam0.opencv8.cameramodel"),
mrcal.cameramodel(f"{testdir}/data/cam1.opencv8.cameramodel"),
mrcal.cameramodel(f"{testdir}/data/cam1.opencv8.cameramodel") )
imagersizes = nps.cat( *[m.imagersize() for m in models_ref] )
lensmodel = models_ref[0].intrinsics()[0]
# I have opencv8 models_ref, but let me truncate to opencv4 models_ref to keep this
# simple and fast
lensmodel = 'LENSMODEL_OPENCV4'
for m in models_ref:
m.intrinsics( intrinsics = (lensmodel, m.intrinsics()[1][:8]))
Nintrinsics = mrcal.lensmodel_num_params(lensmodel)
Ncameras = len(models_ref)
Nframes = 50
models_ref[0].rt_cam_ref(np.zeros((6,), dtype=float))
models_ref[1].rt_cam_ref(np.array((0.08,0.2,0.02, 1., 0.9,0.1)))
models_ref[2].rt_cam_ref(np.array((0.01,0.07,0.2, 2.1,0.4,0.2)))
models_ref[3].rt_cam_ref(np.array((-0.1,0.08,0.08, 4.4,0.2,0.1)))
pixel_uncertainty_stdev = 1.5
object_spacing = 0.1
object_width_n = 10
object_height_n = 9
calobject_warp_ref = np.array((0.002, -0.005))
# shapes (Nframes, Ncameras, Nh, Nw, 2),
# (Nframes, 4,3)
q_ref,Rt_ref_board_ref = \
mrcal.synthesize_board_observations(models_ref,
object_width_n = object_width_n,
object_height_n = object_height_n,
object_spacing = object_spacing,
calobject_warp = calobject_warp_ref,
rt_ref_boardcenter = np.array((0., 0., 0., -2, 0, 4.0)),
rt_ref_boardcenter__noiseradius = np.array((np.pi/180.*30., np.pi/180.*30., np.pi/180.*20., 2.5, 2.5, 2.0)),
Nframes = Nframes)
frames_ref = mrcal.rt_from_Rt(Rt_ref_board_ref)
############# I have perfect observations in q_ref. I corrupt them by noise
# weight has shape (Nframes, Ncameras, Nh, Nw),
weight01 = (np.random.rand(*q_ref.shape[:-1]) + 1.) / 2. # in [0,1]
weight0 = 0.2
weight1 = 1.0
weight = weight0 + (weight1-weight0)*weight01
# I want observations of shape (Nframes*Ncameras, Nh, Nw, 3) where each row is
# (x,y,weight)
observations_ref = nps.clump( nps.glue(q_ref,
nps.dummy(weight,-1),
axis=-1),
n=2)
q_noise,observations = sample_dqref(observations_ref,
pixel_uncertainty_stdev,
make_outliers = True)
# Now I make some of the observations bogus, and mark them as input outliers.
# The solve should be robust to that, but any code that uses the bogus data
# DESPITE it being marked as bogus will generate a test failure
#
# Let's pretend the center of the chessboard has an apriltag, so all those
# observations are bogus. I block out a 5x5 chunk in the center
i0 = object_height_n//2
j0 = object_width_n//2
observations[..., i0-2:i0+3,j0-2:j0+3, 2] = -1. # weight<=0: outlier
observations[..., i0-2:i0+3,j0-2:j0+3,:2] = -100.0 # all the values are bogus
############# Now I pretend that the noisy observations are all I got, and I run
############# a calibration from those
# Dense observations. All the cameras see all the boards
indices_frame_camera = np.zeros( (Nframes*Ncameras, 2), dtype=np.int32)
indices_frame = indices_frame_camera[:,0].reshape(Nframes,Ncameras)
indices_frame.setfield(nps.outer(np.arange(Nframes, dtype=np.int32),
np.ones((Ncameras,), dtype=np.int32)),
dtype = np.int32)
indices_camera = indices_frame_camera[:,1].reshape(Nframes,Ncameras)
indices_camera.setfield(nps.outer(np.ones((Nframes,), dtype=np.int32),
np.arange(Ncameras, dtype=np.int32)),
dtype = np.int32)
indices_frame_camintrinsics_camextrinsics = \
nps.glue(indices_frame_camera,
indices_frame_camera[:,(1,)]-1,
axis=-1)
intrinsics_data,rt_cam_ref,rt_ref_frame = \
mrcal.seed_stereographic(imagersizes = imagersizes,
focal_estimate = 1500,
indices_frame_camera = indices_frame_camera,
observations = observations,
object_spacing = object_spacing)
# I have a stereographic intrinsics estimate. Mount it into a full distortiony
# model, seeded with random numbers
intrinsics = np.zeros((Ncameras,Nintrinsics), dtype=float)
intrinsics[:,:4] = intrinsics_data
intrinsics[:,4:] = np.random.random( (Ncameras, intrinsics.shape[1]-4) ) * 1e-6
optimization_inputs = \
dict( intrinsics = intrinsics,
rt_cam_ref = rt_cam_ref,
rt_ref_frame = rt_ref_frame,
points = None,
observations_board = observations,
indices_frame_camintrinsics_camextrinsics = indices_frame_camintrinsics_camextrinsics,
observations_point = None,
indices_point_camintrinsics_camextrinsics = None,
lensmodel = lensmodel,
calobject_warp = None,
imagersizes = imagersizes,
calibration_object_spacing = object_spacing,
verbose = False,
do_apply_regularization = True)
# Solve this thing incrementally
optimization_inputs['do_optimize_intrinsics_core'] = False
optimization_inputs['do_optimize_intrinsics_distortions'] = False
optimization_inputs['do_optimize_extrinsics'] = True
optimization_inputs['do_optimize_frames'] = True
optimization_inputs['do_optimize_calobject_warp'] = False
mrcal.optimize(**optimization_inputs,
do_apply_outlier_rejection = True)
optimization_inputs['do_optimize_intrinsics_core'] = True
optimization_inputs['do_optimize_intrinsics_distortions'] = False
optimization_inputs['do_optimize_extrinsics'] = True
optimization_inputs['do_optimize_frames'] = True
optimization_inputs['do_optimize_calobject_warp'] = False
mrcal.optimize(**optimization_inputs,
do_apply_outlier_rejection = True)
testutils.confirm_equal( mrcal.num_states(**optimization_inputs),
4*Ncameras + 6*(Ncameras-1) + 6*Nframes,
msg="num_states()")
testutils.confirm_equal( mrcal.num_states_intrinsics(**optimization_inputs),
4*Ncameras,
msg="num_states_intrinsics()")
testutils.confirm_equal( mrcal.num_intrinsics_optimization_params(**optimization_inputs),
4,
msg="num_intrinsics_optimization_params()")
testutils.confirm_equal( mrcal.num_states_extrinsics(**optimization_inputs),
6*(Ncameras-1),
msg="num_states_extrinsics()")
testutils.confirm_equal( mrcal.num_states_frames(**optimization_inputs),
6*Nframes,
msg="num_states_frames()")
testutils.confirm_equal( mrcal.num_states_points(**optimization_inputs),
0,
msg="num_states_points()")
testutils.confirm_equal( mrcal.num_states_calobject_warp(**optimization_inputs),
0,
msg="num_states_calobject_warp()")
testutils.confirm_equal( mrcal.num_measurements_boards(**optimization_inputs),
object_width_n*object_height_n*2*Nframes*Ncameras,
msg="num_measurements_boards()")
testutils.confirm_equal( mrcal.num_measurements_points(**optimization_inputs),
0,
msg="num_measurements_points()")
testutils.confirm_equal( mrcal.num_measurements_regularization(**optimization_inputs),
Ncameras * 2,
msg="num_measurements_regularization()")
optimization_inputs['do_optimize_intrinsics_core'] = True
optimization_inputs['do_optimize_intrinsics_distortions'] = True
optimization_inputs['do_optimize_extrinsics'] = True
optimization_inputs['do_optimize_frames'] = True
optimization_inputs['do_optimize_calobject_warp'] = True
optimization_inputs['calobject_warp'] = np.array((0.001, 0.001))
stats = mrcal.optimize(**optimization_inputs,
do_apply_outlier_rejection = True)
rmserr = stats['rms_reproj_error__pixels']
testutils.confirm_equal( mrcal.state_index_intrinsics(2, **optimization_inputs),
8*2,
msg="state_index_intrinsics()")
testutils.confirm_equal( mrcal.state_index_extrinsics(2, **optimization_inputs),
8*Ncameras + 6*2,
msg="state_index_extrinsics()")
testutils.confirm_equal( mrcal.state_index_frames(2, **optimization_inputs),
8*Ncameras + 6*(Ncameras-1) + 6*2,
msg="state_index_frames()")
testutils.confirm_equal( mrcal.state_index_calobject_warp(**optimization_inputs),
8*Ncameras + 6*(Ncameras-1) + 6*Nframes,
msg="state_index_calobject_warp()")
testutils.confirm_equal( mrcal.measurement_index_boards(2, **optimization_inputs),
object_width_n*object_height_n*2* 2,
msg="measurement_index_boards()")
testutils.confirm_equal( mrcal.measurement_index_regularization(**optimization_inputs),
object_width_n*object_height_n*2*Nframes*Ncameras,
msg="measurement_index_regularization()")
############# Calibration computed. Now I see how well I did
models_solved = \
[ mrcal.cameramodel( optimization_inputs = optimization_inputs,
icam_intrinsics = i )
for i in range(Ncameras)]
if False:
for i in range(0,Ncameras):
f = f'/tmp/tst{i}.cameramodel'
models_solved[i].write(f)
print(f"Wrote '{f}'")
testutils.confirm_equal(rmserr, 0,
eps = 2.5,
msg = "Converged to a low RMS error")
testutils.confirm_equal( optimization_inputs['calobject_warp'],
calobject_warp_ref,
eps = 2e-3,
msg = "Recovered the calibration object shape" )
testutils.confirm_equal( np.std( mrcal.measurements_board(optimization_inputs,
x = stats['x'])),
pixel_uncertainty_stdev,
eps = pixel_uncertainty_stdev*0.1,
msg = "Residual have the expected distribution" )
# Checking the extrinsics. These aren't defined absolutely: each solve is free
# to put the observed frames anywhere it likes. The projection-diff code
# computes a transformation to address this. Here I simply look at the relative
# transformations between cameras, which would cancel out any extra
# transformations, AND since camera0 is fixed at the identity transformation, I
# can simply look at each extrinsics transformation.
for icam in range(1,len(models_ref)):
Rt_extrinsics_err = \
mrcal.compose_Rt( models_solved[icam].Rt_cam_ref(),
models_ref [icam].Rt_ref_cam() )
testutils.confirm_equal( nps.mag(Rt_extrinsics_err[3,:]),
0.0,
eps = 0.05,
msg = f"Recovered extrinsic translation for camera {icam}")
testutils.confirm_equal( (np.trace(Rt_extrinsics_err[:3,:]) - 1) / 2.,
1.0,
eps = np.cos(1. * np.pi/180.0), # 1 deg
msg = f"Recovered extrinsic rotation for camera {icam}")
Rt_frame_err = \
mrcal.compose_Rt( mrcal.Rt_from_rt(optimization_inputs['rt_ref_frame']),
mrcal.invert_Rt(Rt_ref_board_ref) )
testutils.confirm_equal( np.max(nps.mag(Rt_frame_err[..., 3,:])),
0.0,
eps = 0.08,
msg = "Recovered frame translation")
testutils.confirm_equal( np.min( (nps.trace(Rt_frame_err[..., :3,:]) - 1)/2. ),
1.0,
eps = np.cos(1. * np.pi/180.0), # 1 deg
msg = "Recovered frame rotation")
# Checking the intrinsics. Each intrinsics vector encodes an implicit
# transformation. I compute and apply this transformation when making my
# intrinsics comparisons. I make sure that within some distance of the pixel
# center, the projections match up to within some number of pixels
Nw = 60
def projection_diff(models_ref, max_dist_from_center):
lensmodels = [model.intrinsics()[0] for model in models_ref]
intrinsics_data = [model.intrinsics()[1] for model in models_ref]
# v shape (...,Ncameras,Nheight,Nwidth,...)
# q0 shape (..., Nheight,Nwidth,...)
v,q0 = \
mrcal.sample_imager_unproject(Nw,None,
*imagersizes[0],
lensmodels, intrinsics_data,
normalize = True)
W,H = imagersizes[0]
focus_center = None
focus_radius = -1
if focus_center is None: focus_center = ((W-1.)/2., (H-1.)/2.)
if focus_radius < 0: focus_radius = min(W,H)/6.
implied_Rt10 = \
mrcal.implied_Rt10__from_unprojections(q0,
v[0,...], v[1,...],
focus_center = focus_center,
focus_radius = focus_radius)
q1 = mrcal.project( mrcal.transform_point_Rt(implied_Rt10,
v[0,...]),
lensmodels[1], intrinsics_data[1])
diff = nps.mag(q1 - q0)
# zero-out everything too far from the center
center = (imagersizes[0] - 1.) / 2.
diff[ nps.norm2(q0 - center) > max_dist_from_center*max_dist_from_center ] = 0
# gp.plot(diff,
# ascii = True,
# using = mrcal.imagergrid_using(imagersizes[0], Nw),
# square=1, _with='image', tuplesize=3, hardcopy='/tmp/yes.gp', cbmax=3)
return diff
for icam in range(len(models_ref)):
diff = projection_diff( (models_ref[icam], models_solved[icam]), 800)
testutils.confirm_equal(diff, 0,
worstcase = True,
eps = 6.,
msg = f"Recovered intrinsics for camera {icam}")
# It would be nice to check the outlier detections, but this is iffy. Here I'm
# generating 1% outliers (hard-coded in sample_dqref()), but the outlier
# rejection is overly aggressive. I'm currently seeing 4.4%:
#
# np.count_nonzero(observations[...,2]<=0) / observations[...,0].ravel().size
#
# The outlier rejection scheme just cuts out 3sigma residuals and above, so it's
# not great. I'm not entirely sure why it's over-reporting the outliers here,
# but I should investigate that at the same time as I overhaul the outlier
# rejection scheme (presumably to use one of my flavors of Cook's D factor)
# I test make_perfect_observations(). Doing it here is easy; doing it elsewhere
# it much more work
if True:
optimization_inputs_perfect = copy.deepcopy(optimization_inputs)
mrcal.make_perfect_observations(optimization_inputs_perfect,
observed_pixel_uncertainty=0)
x = mrcal.optimizer_callback(**optimization_inputs_perfect,
no_jacobian = True,
no_factorization = True)[1]
Nmeas = mrcal.num_measurements_boards(**optimization_inputs_perfect)
if Nmeas > 0:
i_meas0 = mrcal.measurement_index_boards(0, **optimization_inputs_perfect)
testutils.confirm_equal( x[i_meas0:i_meas0+Nmeas],
0,
worstcase = True,
eps = 1e-8,
msg = f"make_perfect_observations() works for boards")
else:
testutils.confirm( False,
msg = f"Nmeasurements_boards <= 0")
testutils.finish()
|