File: test-projections.py

package info (click to toggle)
mrcal 2.5-3
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 8,992 kB
  • sloc: python: 40,651; ansic: 15,632; cpp: 1,754; perl: 303; makefile: 160; sh: 99; lisp: 84
file content (517 lines) | stat: -rwxr-xr-x 24,600 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
#!/usr/bin/env python3

r'''Tests for project() and unproject()

Here I make sure the projection functions return the correct values. A part of
this is a regression test: the "right" project() results were recorded at some
point, and any deviation is flagged.

This also test gradients, normalization and in-place output.

I want to check all combinations of



add others here: latlon, lonlat, stereographic. Broadcasted and not. Test the
project() and unproject() paths

- project/unproject
- get_gradients:       yes/no
- model simple:        yes/no
- broadcasted:         yes/no
- unproject normalize: yes/no
- explicit "out" in args

check() covers all of these for ONE model

'''

import sys
import numpy as np
import numpysane as nps
import os

testdir = os.path.dirname(os.path.realpath(__file__))

# I import the LOCAL mrcal since that's what I'm testing
sys.path[:0] = f"{testdir}/..",
import mrcal
import testutils
from test_calibration_helpers import grad

import re

def check(intrinsics, p_ref, q_ref):
    ########## project
    q_projected = mrcal.project(p_ref, *intrinsics)
    testutils.confirm_equal(q_projected,
                            q_ref,
                            msg = f"Projecting {intrinsics[0]}",
                            eps = 1e-2)

    q_projected *= 0
    mrcal.project(p_ref, *intrinsics,
                  out = q_projected)
    testutils.confirm_equal(q_projected,
                            q_ref,
                            msg = f"Projecting {intrinsics[0]} in-place",
                            eps = 1e-2)

    meta = mrcal.lensmodel_metadata_and_config(intrinsics[0])
    if meta['has_gradients']:
        @nps.broadcast_define( ((3,),('N',)) )
        def grad_broadcasted(p_ref, i_ref):
            return grad(lambda pi: mrcal.project(pi[:3], intrinsics[0], pi[3:]),
                        nps.glue(p_ref,i_ref, axis=-1))

        dq_dpi_ref = grad_broadcasted(p_ref,intrinsics[1])

        q_projected,dq_dp,dq_di = mrcal.project(p_ref, *intrinsics, get_gradients=True)
        testutils.confirm_equal(q_projected,
                                q_ref,
                                msg = f"Projecting {intrinsics[0]} with grad",
                                eps = 1e-2)
        testutils.confirm_equal(dq_dp,
                                dq_dpi_ref[...,:3],
                                msg = f"dq_dp {intrinsics[0]}",
                                eps = 1e-2)
        testutils.confirm_equal(dq_di,
                                dq_dpi_ref[...,3:],
                                msg = f"dq_di {intrinsics[0]}",
                                eps = 1e-2)

        out=[q_projected,dq_dp,dq_di]
        out[0] *= 0
        out[1] *= 0
        out[2] *= 0
        mrcal.project(p_ref, *intrinsics, get_gradients=True, out=out)

        testutils.confirm_equal(q_projected,
                                q_ref,
                                msg = f"Projecting {intrinsics[0]} with grad in-place",
                                eps = 1e-2)
        testutils.confirm_equal(dq_dp,
                                dq_dpi_ref[...,:3],
                                msg = f"dq_dp in-place",
                                eps = 1e-2)
        testutils.confirm_equal(dq_di,
                                dq_dpi_ref[...,3:],
                                msg = f"dq_di in-place",
                                eps = 1e-2)


    if meta['noncentral']:
        if re.match('LENSMODEL_CAHVORE',intrinsics[0]):
            # CAHVORE. I set E=0, and the projection becomes central. Then
            # unproject() is well-defined and I can run the tests
            intrinsics[1][-3:] = 0
            q_projected = mrcal.project(p_ref, *intrinsics)

        else:
            # Some other kind of noncentral model. I don't bother with
            # unproject()
            return

    ########## unproject
    if 1:
        ##### Un-normalized
        v_unprojected = mrcal.unproject(q_projected, *intrinsics,
                                        normalize = False)

        cos = nps.inner(v_unprojected, p_ref) / nps.mag(p_ref)
        cos = np.clip(cos, -1, 1)
        testutils.confirm_equal( np.arccos(cos),
                                 np.zeros((p_ref.shape[0],), dtype=float),
                                 msg = f"Unprojecting {intrinsics[0]}",
                                 eps = 1e-6)
    if 1:
        ##### Normalized
        v_unprojected_nograd = mrcal.unproject(q_projected, *intrinsics,
                                               normalize = True)

        testutils.confirm_equal( nps.norm2(v_unprojected_nograd),
                                 1,
                                 msg = f"Unprojected v are normalized",
                                 eps = 1e-6)
        cos = nps.inner(v_unprojected_nograd, p_ref) / nps.mag(p_ref)
        cos = np.clip(cos, -1, 1)
        testutils.confirm_equal( np.arccos(cos),
                                 np.zeros((p_ref.shape[0],), dtype=float),
                                 msg = f"Unprojecting {intrinsics[0]} (normalized)",
                                 eps = 1e-6)

    if not meta['has_gradients']:
        # no in-place output for the no-gradients unproject() path
        return

    v_unprojected *= 0
    mrcal.unproject(q_projected, *intrinsics,
                    normalize = True,
                    out = v_unprojected)
    testutils.confirm_equal( nps.norm2(v_unprojected),
                             1,
                             msg = f"Unprojected in-place v are normalized",
                             eps = 1e-6)
    cos = nps.inner(v_unprojected, p_ref) / nps.mag(p_ref)
    cos = np.clip(cos, -1, 1)
    testutils.confirm_equal( np.arccos(cos),
                             np.zeros((p_ref.shape[0],), dtype=float),
                             msg = f"Unprojecting in-place {intrinsics[0]}",
                             eps = 1e-6)

    ### unproject gradients
    v_unprojected,dv_dq,dv_di = mrcal.unproject(q_projected,
                                                *intrinsics, get_gradients=True)

    # I'd like to turn this on, but unproject() doesn't behave the way it
    # should, so this test always fails currently
    #
    # testutils.confirm_equal( v_unprojected,
    #                          v_unprojected_nograd,
    #                          msg = f"Unproject() should return the same thing whether get_gradients or not",
    #                          eps = 1e-6)

    if re.match('^LENSMODEL_CAHVORE',intrinsics[0]):
        dv_dqi_ref = None
    else:

        # Two different gradient computations, to match the two different ways the
        # internal computation is performed
        if intrinsics[0] == 'LENSMODEL_PINHOLE'       or \
           intrinsics[0] == 'LENSMODEL_STEREOGRAPHIC' or \
           intrinsics[0] == 'LENSMODEL_LATLON'        or \
           intrinsics[0] == 'LENSMODEL_LONLAT':

            @nps.broadcast_define( ((2,),('N',)) )
            def grad_broadcasted(q_ref, i_ref):
                return grad(lambda qi: mrcal.unproject(qi[:2], intrinsics[0], qi[2:]),
                            nps.glue(q_ref,i_ref, axis=-1))

            dv_dqi_ref = grad_broadcasted(q_projected,intrinsics[1])

        else:

            @nps.broadcast_define( ((2,),('N',)) )
            def grad_broadcasted(q_ref, i_ref):
                return grad(lambda qi: \
                            mrcal.unproject_stereographic( \
                            mrcal.project_stereographic(
                                mrcal.unproject(qi[:2], intrinsics[0], qi[2:]))),
                            nps.glue(q_ref,i_ref, axis=-1))

            dv_dqi_ref = grad_broadcasted(q_projected,intrinsics[1])


        testutils.confirm_equal(mrcal.project(v_unprojected, *intrinsics),
                                q_projected,
                                msg = f"Unprojecting {intrinsics[0]} with grad",
                                eps = 1e-2)
        testutils.confirm_equal(dv_dq,
                                dv_dqi_ref[...,:2],
                                msg = f"dv_dq: {intrinsics[0]}",
                                worstcase = True,
                                relative  = True,
                                eps = 0.01)
        testutils.confirm_equal(dv_di,
                                dv_dqi_ref[...,2:],
                                msg = f"dv_di {intrinsics[0]}",
                                worstcase = True,
                                relative  = True,
                                eps = 0.01)

    # Normalized unprojected gradients
    v_unprojected,dv_dq,dv_di = mrcal.unproject(q_projected,
                                                *intrinsics,
                                                normalize     = True,
                                                get_gradients = True)
    testutils.confirm_equal( nps.norm2(v_unprojected),
                             1,
                             msg = f"Unprojected v (with gradients) are normalized",
                             eps = 1e-6)
    cos = nps.inner(v_unprojected, p_ref) / nps.mag(p_ref)
    cos = np.clip(cos, -1, 1)
    testutils.confirm_equal( np.arccos(cos),
                             np.zeros((p_ref.shape[0],), dtype=float),
                             msg = f"Unprojecting (normalized, with gradients) {intrinsics[0]}",
                             eps = 1e-6)

    if re.match('^LENSMODEL_CAHVORE',intrinsics[0]):
        dvnormalized_dqi_ref = None
    else:
        @nps.broadcast_define( ((2,),('N',)) )
        def grad_normalized_broadcasted(q_ref, i_ref):
            return grad(lambda qi: \
                        mrcal.unproject(qi[:2], intrinsics[0], qi[2:], normalize=True),
                        nps.glue(q_ref,i_ref, axis=-1))

        dvnormalized_dqi_ref = grad_normalized_broadcasted(q_projected,intrinsics[1])

        testutils.confirm_equal(dv_dq,
                                dvnormalized_dqi_ref[...,:2],
                                msg = f"dv_dq (normalized v): {intrinsics[0]}",
                                worstcase = True,
                                relative  = True,
                                eps = 0.01)
        testutils.confirm_equal(dv_di,
                                dvnormalized_dqi_ref[...,2:],
                                msg = f"dv_di (normalized v): {intrinsics[0]}",
                                worstcase = True,
                                relative  = True,
                                eps = 0.01)

    # unproject() with gradients, in-place
    if 1:
        # Normalized output
        out=[v_unprojected,dv_dq,dv_di]
        out[0] *= 0
        out[1] *= 0
        out[2] *= 0

        mrcal.unproject(q_projected,
                        *intrinsics,
                        normalize     = True,
                        get_gradients = True,
                        out           = out)
        testutils.confirm_equal( nps.norm2(v_unprojected),
                                 1,
                                 msg = f"Unprojected v (with gradients, in-place) are normalized",
                                 eps = 1e-6)
        cos = nps.inner(v_unprojected, p_ref) / nps.mag(p_ref)
        cos = np.clip(cos, -1, 1)
        testutils.confirm_equal( np.arccos(cos),
                                 np.zeros((p_ref.shape[0],), dtype=float),
                                 msg = f"Unprojecting (normalized, with gradients, in-place) {intrinsics[0]}",
                                 eps = 1e-6)

        if dvnormalized_dqi_ref is not None:
            testutils.confirm_equal(dv_dq,
                                    dvnormalized_dqi_ref[...,:2],
                                    msg = f"dv_dq (normalized v, in-place): {intrinsics[0]}",
                                    worstcase = True,
                                    relative  = True,
                                    eps = 0.01)
            testutils.confirm_equal(dv_di,
                                    dvnormalized_dqi_ref[...,2:],
                                    msg = f"dv_di (normalized v, in-place): {intrinsics[0]}",
                                    worstcase = True,
                                    relative  = True,
                                    eps = 0.01)

    if 1:
        # un-normalized output
        out=[v_unprojected,dv_dq,dv_di]
        out[0] *= 0
        out[1] *= 0
        out[2] *= 0

        mrcal.unproject(q_projected,
                        *intrinsics,
                        normalize     = False,
                        get_gradients = True,
                        out           = out)
        cos = nps.inner(v_unprojected, p_ref) / nps.mag(p_ref)
        cos = np.clip(cos, -1, 1)
        testutils.confirm_equal( np.arccos(cos),
                                 np.zeros((p_ref.shape[0],), dtype=float),
                                 msg = f"Unprojecting (non-normalized, with gradients, in-place) {intrinsics[0]}",
                                 eps = 1e-6)

        if dv_dqi_ref is not None:
            testutils.confirm_equal(dv_dq,
                                    dv_dqi_ref[...,:2],
                                    msg = f"dv_dq (unnormalized v, in-place): {intrinsics[0]}",
                                    worstcase = True,
                                    relative  = True,
                                    eps = 0.01)
            testutils.confirm_equal(dv_di,
                                    dv_dqi_ref[...,2:],
                                    msg = f"dv_di (unnormalized v, in-place): {intrinsics[0]}",
                                    worstcase = True,
                                    relative  = True,
                                    eps = 0.01)




# a few points, some wide, some not. None behind the camera
p = np.array(((1.0, 2.0, 10.0),
              (-1.1, 0.3, 1.0),
              (-0.9, -1.5, 1.0)))

check( ('LENSMODEL_PINHOLE', np.array(((1512., 1112, 500., 333.),
                                       (1512., 1112, 500., 433.),
                                       (1512., 1112, 500., 533.)))),
       p,
       np.array([[  651.2,   555.4],
                 [-1163.2,   766.6],
                 [ -860.8, -1135. ]]))

check( ('LENSMODEL_STEREOGRAPHIC', np.array(((1512., 1112, 500., 333.),
                                             (1502., 1112, 500., 433.),
                                             (1522., 1112, 500., 533.)))),
       p,
       np.array([[ 649.35582325,  552.6874014],
                 [-813.05440267,  698.1222302],
                 [-408.67354332,  -573.48815174]]))

check( ('LENSMODEL_LATLON', np.array(((1512., 1112, 500., 333.),
                                      (1502., 1112, 500., 433.),
                                      (1522., 1112, 500., 533.)))),
       p,
       np.array([[ 647.79131656,  552.50386255],
                 [-718.86844854,  757.09995546],
                 [-204.73403533, -559.86662025]]))

check( ('LENSMODEL_LONLAT', np.array(((1512., 1112, 500., 333.),
                                      (1502., 1112, 500., 433.),
                                      (1522., 1112, 500., 533.)))),
       p,
       np.array([[ 650.69900257,  551.44238248],
                 [-751.13786254,  654.42977413],
                 [-615.34458492, -400.73749463]]))

check( ('LENSMODEL_OPENCV4', np.array((1512., 1112, 500., 333.,
                                       -0.012, 0.035, -0.001, 0.002))),
       p,
       np.array([[  651.27371  ,   555.23042  ],
                 [-1223.38516  ,   678.01468  ],
                 [-1246.7310448, -1822.799928 ]]))

check( ('LENSMODEL_OPENCV5', np.array((1512., 1112, 500., 333.,
                                       -0.012, 0.035, -0.001, 0.002, 0.019))),
       p,
       np.array([[  651.2740691 ,   555.2309482 ],
                 [-1292.8121176 ,   691.9401448 ],
                 [-1987.550162  , -2730.85863427]]))

check( ('LENSMODEL_OPENCV8', np.array((1512., 1112, 500., 333.,
                                       -0.012, 0.035, -0.001, 0.002, 0.019, 0.014, -0.056, 0.050))),
       p,
       np.array([[  651.1885442 ,   555.10514968],
                 [-1234.45480366,   680.23499814],
                 [ -770.03274263, -1238.4871943 ]]))

check( ('LENSMODEL_CAHVOR', np.array((4842.918, 4842.771, 1970.528, 1085.302,
                                      -0.001, 0.002, -0.637, -0.002, 0.016))),
       p,
       np.array([[ 2143.17840406,  1442.93419919],
                 [  -92.63813066,  1653.09646897],
                 [ -249.83199315, -2606.46477164]]))

# E ~ 0: almost central
check( ('LENSMODEL_CAHVORE_linearity=0.00',
        np.array((4842.918, 4842.771, 1970.528, 1085.302,
                  -0.001, 0.002, -0.637, -0.002, 0.016, 1e-8, 2e-8, 3e-8))),
       p,
       np.array(([2140.340769278752759, 1437.371480086463635],
                 [496.634661939782575, 1493.316705796434917],
                 [970.117888562484495, -568.301135889864668])))

# E != 0: noncentral
check( ('LENSMODEL_CAHVORE_linearity=0.00',
        np.array((4842.918, 4842.771, 1970.528, 1085.302,
                  -0.001, 0.002, -0.637, -0.002, 0.016, 1e-2, 2e-2, 3e-2))),
       p,
       np.array(([2140.342263050081783, 1437.374408380910836],
                 [491.682975341940221, 1494.659342555658441],
                 [962.730552352575160, -580.643118338666000])))

# E != 0: noncentral. AND linearity > 0
check( ('LENSMODEL_CAHVORE_linearity=0.40',
        np.array((4842.918, 4842.771, 1970.528, 1085.302,
                  -0.001, 0.002, -0.637, -0.002, 0.016, 1e-2, 2e-2, 3e-2))),
       p,
       np.array(([2140.788976358770469, 1438.250116781426641],
                 [426.278593220184689, 1512.393568241352796],
                 [882.926242407330619, -713.971745152981612])))


# Note that some of the projected points are behind the camera (z<0), which is
# possible with these models. Also note that some of the projected points are
# off the imager (x<0). This is aphysical, but it just means that the model was
# made up; which it was. The math still works normally, and this is just fine as
# a test
check( ('LENSMODEL_SPLINED_STEREOGRAPHIC_order=3_Nx=11_Ny=8_fov_x_deg=200',
        np.array([ 1500.0, 1800.0, 1499.5,999.5,
                   2.017284705,1.242204557,2.053514381,1.214368063,2.0379067,1.212609628,
                   2.033278227,1.183689487,2.040018023,1.188554431,2.069146825,1.196304649,
                   2.085708658,1.186478238,2.065787617,1.163377825,2.086372192,1.138856716,
                   2.131609155,1.125678279,2.128812604,1.120525061,2.00841491,1.21864154,
                   2.024522768,1.239588759,2.034947935,1.19814079,2.065474055,1.19897294,
                   2.044562395,1.200557321,2.087714092,1.160440038,2.086478691,1.151822407,
                   2.112862582,1.147567288,2.101575718,1.146312256,2.10056469,1.157015327,
                   2.113488262,1.111679758,2.019837901,1.244168216,2.025847768,1.215633807,
                   2.041980956,1.205751212,2.075077056,1.199787561,2.070877831,1.203261678,
                   2.067244278,1.184705736,2.082225077,1.185558149,2.091519961,1.17501817,
                   2.120258866,1.137775228,2.120020747,1.152409316,2.121870228,1.113069319,
                   2.043650555,1.247757041,2.019661062,1.230723629,2.067917203,1.209753396,
                   2.035034141,1.219514335,2.045350268,1.178474255,2.046346049,1.169372592,
                   2.097839998,1.194836758,2.112724938,1.172186377,2.110996386,1.154899043,
                   2.128456883,1.133228404,2.122513384,1.131717886,2.044279196,1.233288366,
                   2.023197297,1.230118703,2.06707694,1.199998862,2.044147271,1.191607451,
                   2.058590053,1.1677808,2.081593501,1.182074581,2.08663053,1.159156329,
                   2.084329086,1.157727374,2.073666528,1.151261965,2.114290905,1.144710519,
                   2.138600912,1.119405248,2.016299528,1.206147494,2.029434175,1.211507857,
                   2.057936091,1.19801196,2.035691392,1.174035359,2.084718618,1.203604729,
                   2.085910021,1.158385222,2.080800068,1.150199852,2.087991586,1.162019581,
                   2.094754507,1.151061493,2.115144642,1.154299799,2.107014195,1.127608146,
                   2.005632475,1.238607328,2.02033157,1.202101384,2.061021703,1.214868271,
                   2.043015135,1.211903685,2.05291186,1.188092787,2.09486724,1.179277314,
                   2.078230124,1.186273023,2.077743945,1.148028845,2.081634186,1.131207467,
                   2.112936851,1.126412871,2.113220553,1.114991063,2.017901873,1.244588667,
                   2.051238803,1.201855728,2.043256406,1.216674722,2.035286046,1.178380907,
                   2.08028318,1.178783085,2.051214271,1.173560417,2.059298121,1.182414688,
                   2.094607679,1.177960959,2.086998287,1.147371259,2.12029442,1.138197348,
                   2.138994213, 1.114846113,],)),

       # some points behind the camera!
       np.array([[-0.8479983,  -0.52999894, -0.34690877],
                 [-0.93984618,  0.34159794, -0.16119387],
                 [-0.97738792,  0.21145412,  5.49068928]]),
       np.array([[ 965.9173441 ,  524.31894367],
                 [1246.58668369, 4621.35427783],
                 [4329.41598149, 3183.75121559]]))

check( ('LENSMODEL_SPLINED_STEREOGRAPHIC_order=2_Nx=11_Ny=8_fov_x_deg=200',
        np.array([ 1500.0, 1800.0, 1499.5,999.5,
                   2.017284705,1.242204557,2.053514381,1.214368063,2.0379067,1.212609628,
                   2.033278227,1.183689487,2.040018023,1.188554431,2.069146825,1.196304649,
                   2.085708658,1.186478238,2.065787617,1.163377825,2.086372192,1.138856716,
                   2.131609155,1.125678279,2.128812604,1.120525061,2.00841491,1.21864154,
                   2.024522768,1.239588759,2.034947935,1.19814079,2.065474055,1.19897294,
                   2.044562395,1.200557321,2.087714092,1.160440038,2.086478691,1.151822407,
                   2.112862582,1.147567288,2.101575718,1.146312256,2.10056469,1.157015327,
                   2.113488262,1.111679758,2.019837901,1.244168216,2.025847768,1.215633807,
                   2.041980956,1.205751212,2.075077056,1.199787561,2.070877831,1.203261678,
                   2.067244278,1.184705736,2.082225077,1.185558149,2.091519961,1.17501817,
                   2.120258866,1.137775228,2.120020747,1.152409316,2.121870228,1.113069319,
                   2.043650555,1.247757041,2.019661062,1.230723629,2.067917203,1.209753396,
                   2.035034141,1.219514335,2.045350268,1.178474255,2.046346049,1.169372592,
                   2.097839998,1.194836758,2.112724938,1.172186377,2.110996386,1.154899043,
                   2.128456883,1.133228404,2.122513384,1.131717886,2.044279196,1.233288366,
                   2.023197297,1.230118703,2.06707694,1.199998862,2.044147271,1.191607451,
                   2.058590053,1.1677808,2.081593501,1.182074581,2.08663053,1.159156329,
                   2.084329086,1.157727374,2.073666528,1.151261965,2.114290905,1.144710519,
                   2.138600912,1.119405248,2.016299528,1.206147494,2.029434175,1.211507857,
                   2.057936091,1.19801196,2.035691392,1.174035359,2.084718618,1.203604729,
                   2.085910021,1.158385222,2.080800068,1.150199852,2.087991586,1.162019581,
                   2.094754507,1.151061493,2.115144642,1.154299799,2.107014195,1.127608146,
                   2.005632475,1.238607328,2.02033157,1.202101384,2.061021703,1.214868271,
                   2.043015135,1.211903685,2.05291186,1.188092787,2.09486724,1.179277314,
                   2.078230124,1.186273023,2.077743945,1.148028845,2.081634186,1.131207467,
                   2.112936851,1.126412871,2.113220553,1.114991063,2.017901873,1.244588667,
                   2.051238803,1.201855728,2.043256406,1.216674722,2.035286046,1.178380907,
                   2.08028318,1.178783085,2.051214271,1.173560417,2.059298121,1.182414688,
                   2.094607679,1.177960959,2.086998287,1.147371259,2.12029442,1.138197348,
                   2.138994213, 1.114846113,],)),

       # some points behind the camera!
       np.array([[-0.8479983,  -0.52999894, -0.34690877],
                 [-0.93984618,  0.34159794, -0.16119387],
                 [-0.97738792,  0.21145412,  5.49068928]]),
       np.array([[ 958.48347896,  529.99410342],
                 [1229.87308989, 4625.05434521],
                 [4327.8166836 , 3183.44237796]]))


testutils.finish()