1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
|
#!/usr/bin/env python3
r'''Tests mrcal.sorted_eig
This has complex logic to support broadcasting, and I validate it here
'''
import sys
import numpy as np
import numpysane as nps
import os
testdir = os.path.dirname(os.path.realpath(__file__))
# I import the LOCAL mrcal since that's what I'm testing
sys.path[:0] = f"{testdir}/..",
import mrcal
import testutils
# Reference data generated like this:
# l_ref = np.random.random((4,5,3))
# v_ref = np.random.random((4,5,3,3))
# v_ref /= nps.dummy(nps.mag(v_ref), -1)
l_ref = np.array(
[[[0.67155361, 0.3739189 , 0.95940538],
[0.14668176, 0.07336839, 0.86729039],
[0.75139476, 0.44131877, 0.65641997],
[0.08619787, 0.00514196, 0.46842911],
[0.10580845, 0.32199031, 0.3735915 ]],
[[0.05508103, 0.48401787, 0.46611417],
[0.9483949 , 0.87735674, 0.45872956],
[0.17057072, 0.47791177, 0.19352408],
[0.13524878, 0.48731269, 0.42794007],
[0.26253366, 0.55161897, 0.95356585]],
[[0.70013654, 0.15301631, 0.66004348],
[0.77747137, 0.48248562, 0.59674648],
[0.67373556, 0.42192842, 0.50667046],
[0.55300486, 0.99944748, 0.94900917],
[0.23368724, 0.88016081, 0.95223845]],
[[0.00710551, 0.59964954, 0.07766728],
[0.3990046 , 0.11612546, 0.9119466 ],
[0.58064238, 0.2557102 , 0.37509017],
[0.8777226 , 0.49047888, 0.93402964],
[0.69596428, 0.53620116, 0.17331565]]])
v_ref = np.array(
[[[[0.25492998, 0.96651093, 0.0294505 ],
[0.60080772, 0.41212806, 0.68496755],
[0.73501109, 0.48565382, 0.47317974]],
[[0.70813727, 0.03220643, 0.70533988],
[0.93102532, 0.36255803, 0.04175557],
[0.20480975, 0.40688981, 0.89022112]],
[[0.7224457 , 0.24393336, 0.64696888],
[0.35658574, 0.13414791, 0.9245815 ],
[0.13909208, 0.60359174, 0.78506714]],
[[0.75648707, 0.27895008, 0.59153543],
[0.72671999, 0.43434694, 0.53218492],
[0.65150949, 0.75369119, 0.08651575]],
[[0.97809611, 0.20788551, 0.0105651 ],
[0.54238903, 0.47683243, 0.69169717],
[0.49810472, 0.82565147, 0.2649365 ]]],
[[[0.61093683, 0.14117182, 0.77899083],
[0.6181547 , 0.77847647, 0.10889971],
[0.08704351, 0.1252583 , 0.98829843]],
[[0.60466605, 0.73939429, 0.29609974],
[0.16013313, 0.70419195, 0.69171604],
[0.99552064, 0.07759479, 0.05401577]],
[[0.82056474, 0.21231952, 0.53065425],
[0.76537934, 0.56808399, 0.30244843],
[0.946437 , 0.31493105, 0.07124214]],
[[0.74296313, 0.65833599, 0.12082848],
[0.55311763, 0.48774553, 0.67540002],
[0.04022766, 0.231213 , 0.97207113]],
[[0.74732957, 0.55426305, 0.36645734],
[0.46692915, 0.62976623, 0.62078311],
[0.33625853, 0.81507223, 0.47179175]]],
[[[0.72795853, 0.68050259, 0.08362175],
[0.69587492, 0.06301186, 0.71539332],
[0.61449548, 0.78748595, 0.04755187]],
[[0.0804386 , 0.97052257, 0.22719061],
[0.68761638, 0.29892877, 0.66168369],
[0.11544557, 0.60308161, 0.78928125]],
[[0.70195868, 0.03183947, 0.71150563],
[0.64728709, 0.59533928, 0.4760153 ],
[0.7341157 , 0.52967069, 0.4248801 ]],
[[0.87429733, 0.33296173, 0.35318645],
[0.96062012, 0.27237033, 0.05498541],
[0.50479801, 0.86215336, 0.04324986]],
[[0.83840394, 0.5022181 , 0.21179193],
[0.16494462, 0.94329994, 0.28805987],
[0.09539021, 0.97808363, 0.18507601]]],
[[[0.98847591, 0.1197682 , 0.09257946],
[0.88339796, 0.34700512, 0.31495315],
[0.36753448, 0.75206847, 0.54709362]],
[[0.47027684, 0.63504071, 0.61283194],
[0.92883661, 0.15765952, 0.33527009],
[0.83514385, 0.04180379, 0.5484407 ]],
[[0.85047215, 0.29296156, 0.43688746],
[0.48273108, 0.84169098, 0.24192353],
[0.41951382, 0.89475556, 0.15303802]],
[[0.2493765 , 0.88257578, 0.39858669],
[0.06407165, 0.67978738, 0.73060519],
[0.78739648, 0.07009669, 0.61244856]],
[[0.33123086, 0.91225007, 0.24101023],
[0.02113432, 0.10669425, 0.99406724],
[0.84421151, 0.19562951, 0.4990351 ]]]])
# I want the unit vectors in cols, not rows
v_ref = nps.transpose(v_ref)
@nps.broadcast_define( ( ('N',), ),
('N','N'))
def diag(d):
return np.diag(d)
X = nps.matmult(v_ref, diag(l_ref), np.linalg.inv(v_ref))
####### First, the simple non-broadcasted case
l,v = mrcal.sorted_eig(X[1,2])
testutils.confirm_equal(l.shape,
(3,),
msg = "Single matrix: l.shape")
testutils.confirm_equal(v.shape,
(3,3,),
msg = "Single matrix: v.shape")
testutils.confirm(np.all(np.diff(l) > 0),
msg = "Single matrix: monotonic eigenvalues")
testutils.confirm_equal(l,
np.sort(l_ref[1,2]),
worstcase = True,
eps=1e-6,
msg = "Single matrix: eigenvalues")
isorted = np.argsort(l_ref[1,2])
for i in range(len(isorted)):
# I check the abs(inner) to ignore sign differences
testutils.confirm_equal(np.abs(nps.inner(v[:,i],v_ref[1,2,:,isorted[i]])),
1.0,
worstcase = True,
eps=1e-6,
msg = f"Single matrix: eigenvector[{i}]")
####### Full, broadcasted case
l,v = mrcal.sorted_eig(X)
all_shapes_passed = \
all((x for x in \
(testutils.confirm_equal(l.shape,
X.shape[:-1],
msg = "Broadcasted matrix: l.shape"),
testutils.confirm_equal(v.shape,
X.shape,
msg = "Broadcasted matrix: v.shape"))))
# I only bother checking the values if the shapes are right
if all_shapes_passed:
testutils.confirm(np.all(np.diff(l) > 0),
msg = "Broadcasted matrix: monotonic eigenvalues")
testutils.confirm_equal(l,
np.sort(l_ref),
worstcase = True,
eps=1e-6,
msg = "Broadcasted matrix: eigenvalues")
# the complex eigenvector selection logic is the thing being tested, so I
# check the reconstituted full matrix instead
testutils.confirm_equal(nps.matmult(v, diag(l), np.linalg.inv(v)),
X,
worstcase = True,
eps=1e-6,
msg = f"Broadcasted matrix: eigenvectors")
testutils.finish()
|