1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
|
import sys
import numpy as np
import numpysane as nps
import os
import re
from inspect import currentframe
import mrcal
Nchecks = 0
NchecksFailed = 0
# no line breaks. Useful for test reporting. Yes, this sets global state, but
# we're running a test harness. This is fine
np.set_printoptions(linewidth=1e10, suppress=True)
def percentile_compat(*args, **kwargs):
r'''Wrapper for np.percentile() to handle their API change
In numpy 1.24 the "interpolation" kwarg was renamed to "method". I need to pass
the right thing to work with both old and new numpy. This function tries the
newer method, and if that fails, uses the old one. The test is only done the
first time.
It is assumed that this is called with the old 'interpolation' key.
'''
if not 'interpolation' in kwargs or \
percentile_compat.which == 'interpolation':
return np.percentile(*args, **kwargs)
kwargs_no_interpolation = dict(kwargs)
del kwargs_no_interpolation['interpolation']
if percentile_compat.which == 'method':
return np.percentile(*args, **kwargs_no_interpolation,
method = kwargs['interpolation'])
# Need to detect
try:
result = np.percentile(*args, **kwargs_no_interpolation,
method = kwargs['interpolation'])
percentile_compat.which = 'method'
return result
except:
percentile_compat.which = 'interpolation'
return np.percentile(*args, **kwargs)
percentile_compat.which = None
def test_location():
r'''Reports string describing current location in the test'''
filename_this = os.path.split( __file__ )[1]
frame = currentframe().f_back.f_back
# I keep popping the stack until I leave the testutils file and I'm not in a
# function called "check"
while frame:
if frame.f_back is None or \
(not frame.f_code.co_filename.endswith(filename_this) and
frame.f_code.co_name != "check" ):
break
frame = frame.f_back
testfile = os.path.split(frame.f_code.co_filename)[1]
try:
return "{}:{}".format(testfile, frame.f_lineno)
except:
return ''
def print_red(x):
"""print the message in red"""
sys.stdout.write("\x1b[31m" + test_location() + ": " + x + "\x1b[0m\n")
def print_green(x):
"""Print the message in green"""
sys.stdout.write("\x1b[32m" + test_location() + ": " + x + "\x1b[0m\n")
def print_blue(x):
"""Print the message in blue"""
sys.stdout.write("\x1b[34m" + test_location() + ": " + x + "\x1b[0m\n")
def relative_scale(a,b,
*,
smooth_radius = None,
eps = 1e-6):
if smooth_radius is not None and smooth_radius > 0:
d = smooth_radius*2 + 1
f = np.ones((d,),) / d
a = np.convolve(a, f, mode='same')
b = np.convolve(b, f, mode='same')
return (np.abs(a) + np.abs(b)) / 2 + eps
def relative_diff(a,b,
*,
smooth_radius = None,
eps = 1e-6):
return (a - b) / relative_scale(a,b,
eps = eps,
smooth_radius = smooth_radius)
def confirm_equal(x, xref,
*,
msg='',
eps=1e-6,
reldiff_eps = 1e-6,
reldiff_smooth_radius = None,
relative=False,
worstcase=False,
percentile=None,
r=False):
r'''If x is equal to xref, report test success.
msg identifies this check. eps sets the RMS equality tolerance. The x,xref
arguments can be given as many different types. This function tries to do
the right thing.
if relative: I look at a relative error:
err = (a-b) / ((abs(a)+abs(b))/2 + eps)
a,b can be smoothed with a kernel of the given smooth_radius
else: I look at absolute error:
err = a-b
if worstcase: I look at the worst-case error
error = np.max(np.abs(err))
elif percentile is not None: I look at the given point in the error distribution
error = percentile_compat(np.abs(err), percentile)
else: RMS error
error = np.sqrt(nps.norm2(err) / len(err))
if r: we are comparing rodrigues rotations. More than one set of r values
can represent the same rotation
Let k be an integer. r = th * vaxis.
Changing th -> th + k*2pi implies the same rotation
Changing vaxis -> -vaxis and th -> 2pi-th also implies the same rotation
I normalize the inputs first by finding the rotation with the smallest th
'''
if r:
if not (x.shape[-1] == 3 and xref.shape[-1] == 3):
raise Exception("confirm_equal(r=True) only makes sense if x and xref have shape (...,3)")
def normalize_r(r):
th = nps.mag(r)
v = r / nps.dummy(th, -1)
th %= 2.*np.pi
# th is now in [0,2pi)
if th > np.pi:
th = 2.*np.pi - th
v *= -1
# th is in [0,pi)
return th * v
x = normalize_r(x)
xref = normalize_r(xref)
global Nchecks
global NchecksFailed
Nchecks = Nchecks + 1
# strip all trailing whitespace in each line, in case these are strings
if isinstance(x, str):
x = re.sub('[ \t]+(\n|$)', '\\1', x)
if isinstance(xref, str):
xref = re.sub('[ \t]+(\n|$)', '\\1', xref)
# convert data to numpy if possible
try:
xref = np.array(xref)
except:
pass
try:
x = np.array(x)
except:
pass
try: # flatten array if possible
x = x.ravel()
xref = xref.ravel()
except:
pass
try:
N = x.shape[0]
except:
N = 1
try:
Nref = xref.shape[0]
except:
Nref = 1
if N != Nref:
# Comparing an array to a scalar reference is allowed
if Nref == 1:
xref = np.ones((N,), dtype=float) * xref
Nref = N
else:
print_red(("FAILED{}: mismatched array sizes: N = {} but Nref = {}. Arrays: \n" +
"x = {}\n" +
"xref = {}").
format((': ' + msg) if msg else '',
N, Nref,
x, xref))
NchecksFailed = NchecksFailed + 1
return False
if N != 0:
try: # I I can subtract, get the error that way
if relative:
diff = relative_diff(x, xref,
eps = reldiff_eps,
smooth_radius = reldiff_smooth_radius)
else:
diff = x - xref
if worstcase:
what = 'worst-case'
err = np.max(np.abs(diff))
elif percentile is not None:
what = f'{percentile}%-percentile'
err = percentile_compat(np.abs(diff), percentile, interpolation='higher')
else:
what = 'RMS'
err = np.sqrt(nps.norm2(diff) / len(diff))
if not np.all(np.isfinite(err)):
print_red(f"FAILED{(': ' + msg) if msg else ''}: Some comparison results are NaN or Inf. {what}. error_x_xref =\n{nps.cat(err,x,xref)}")
NchecksFailed = NchecksFailed + 1
return False
if err > eps:
print_red(f"FAILED{(': ' + msg) if msg else ''}: {what} error = {err}. x_xref_err =\n{nps.cat(x,xref,diff)}")
NchecksFailed = NchecksFailed + 1
return False
except: # Can't subtract. Do == instead
if not np.array_equal(x, xref):
print_red(f"FAILED{(': ' + msg) if msg else ''}: x_xref =\n{nps.cat(x,xref)}")
NchecksFailed = NchecksFailed + 1
return False
print_green("OK" + (': ' + msg) if msg else '')
return True
def confirm(x, msg=''):
r'''If x is true, report test success.
msg identifies this check'''
global Nchecks
global NchecksFailed
Nchecks = Nchecks + 1
if not x:
print_red("FAILED{}".format((': ' + msg) if msg else ''))
NchecksFailed = NchecksFailed + 1
return False
print_green("OK{}".format((': ' + msg) if msg else ''))
return True
def confirm_raises(f, msg=''):
r'''If f() raises an exception, report test success.
msg identifies this check'''
global Nchecks
global NchecksFailed
Nchecks = Nchecks + 1
try:
f()
print_red("FAILED{}".format((': ' + msg) if msg else ''))
NchecksFailed = NchecksFailed + 1
return False
except:
print_green("OK{}".format((': ' + msg) if msg else ''))
return True
def confirm_does_not_raise(f, msg=''):
r'''If f() raises an exception, report test failure.
msg identifies this check'''
global Nchecks
global NchecksFailed
Nchecks = Nchecks + 1
try:
f()
print_green("OK{}".format((': ' + msg) if msg else ''))
return True
except:
print_red("FAILED{}".format((': ' + msg) if msg else ''))
NchecksFailed = NchecksFailed + 1
return False
def confirm_covariances_equal(var, var_ref,
*,
what,
# scalar float to use for all the eigenvalues, of
# a list of length 3, to use in order from largest
# to smallest. None to skip that axis
eps_eigenvalues,
eps_eigenvectors_deg,
check_biggest_eigenvalue_only = False,
# In real units, the ellipse radii are of size
# sqrt(eigenvalue), so this SHOULD be true. But I
# default to False to make the old tests work. New
# tests should set this to True
check_sqrt_eigenvalue = False):
# First, the thing is symmetric, right?
confirm_equal(nps.transpose(var),
var,
worstcase = True,
msg = f"Var(dq) is symmetric for {what}")
l_predicted,v_predicted = mrcal.sorted_eig(var)
l_observed, v_observed = mrcal.sorted_eig(var_ref)
eccentricity_threshold = 2.
if check_sqrt_eigenvalue:
l_predicted = np.sqrt(l_predicted)
l_observed = np.sqrt(l_observed)
eccentricity_threshold = np.sqrt(eccentricity_threshold)
# This look at JUST the most dominant modes
eccentricity_predicted = l_predicted[-1] / l_predicted[-2]
for i in range(var.shape[-1]):
# check all the eigenvalues, in order from largest to smallest
if isinstance(eps_eigenvalues, float):
eps = eps_eigenvalues
else:
eps = eps_eigenvalues[i]
if eps is None:
continue
confirm_equal(l_observed[-1-i],
l_predicted[-1-i],
eps = eps,
worstcase = True,
relative = True,
msg = f"Var(dq) largest[{i}] eigenvalue match for {what}")
if check_biggest_eigenvalue_only:
break
# I only check the eigenvector directions if the ellipse is sufficiently
# non-circular. A circular ellipse has poorly-defined eigenvector directions
if eccentricity_predicted > eccentricity_threshold:
# I look at the direction of the largest ellipse axis only
v0_predicted = v_predicted[:,-1]
v0_observed = v_observed [:,-1]
confirm_equal(np.arccos(np.abs(nps.inner(v0_observed,v0_predicted))) * 180./np.pi,
0,
eps = eps_eigenvectors_deg,
worstcase = True,
msg = f"Var(dq) eigenvectors match for {what}")
# I don't bother checking v1. I already made sure the matrix is
# symmetric. Thus the eigenvectors are orthogonal, so any angle offset
# in v0 will be exactly the same in v1
def finish():
r'''Finalize the executed tests.
Prints the test summary. Exits successfully iff all the tests passed.
'''
if not Nchecks and not NchecksFailed:
print_red("No tests defined")
sys.exit(0)
if NchecksFailed:
print_red("Some tests failed: {} out of {}".format(NchecksFailed, Nchecks))
sys.exit(1)
print_green("All tests passed: {} total".format(Nchecks))
sys.exit(0)
|