File: study.py

package info (click to toggle)
mrcal 2.5.2-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 8,548 kB
  • sloc: python: 40,828; ansic: 15,809; cpp: 1,754; perl: 303; makefile: 163; sh: 99; lisp: 84
file content (302 lines) | stat: -rwxr-xr-x 12,238 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
#!/usr/bin/env python3

r'''Study the precision and accuracy of the various triangulation routines'''


import sys
import argparse
import re
import os


def parse_args():

    parser = \
        argparse.ArgumentParser(description = __doc__,
                                formatter_class=argparse.RawDescriptionHelpFormatter)

    parser.add_argument('--Nsamples',
                        type=int,
                        default=100000,
                        help='''How many random samples to evaluate. 100000 by
                        default''')

    group = parser.add_mutually_exclusive_group(required = True)
    group.add_argument('--ellipses',
                       action='store_true',
                       help='''Display the ellipses and samples in the xy plane''')
    group.add_argument('--ranges',
                       action='store_true',
                       help='''Display the distribution of the range''')


    parser.add_argument('--samples',
                       action='store_true',
                       help='''If --ellipses, plot the samples ALSO. Usually
                       this doesn't clarify anything, so the default is to omit
                       them''')

    parser.add_argument('--cache',
                        type=str,
                        choices=('read','write'),
                        help=f'''A cache file stores the recalibration results;
                        computing these can take a long time. This option allows
                        us to or write the cache instead of sampling. The cache
                        file is hardcoded to a cache file (in /tmp). By default,
                        we do neither: we don't read the cache (we sample
                        instead), and we do not write it to disk when we're
                        done. This option is useful for tests where we reprocess
                        the same scenario repeatedly''')

    parser.add_argument('--observed-point',
                        type    = float,
                        nargs   = 3,
                        default = ( 5000., 300.,  2000.),
                        help='''The camera0 coordinate of the observed point.
                        Default is ( 5000., 300., 2000.)''')


    parser.add_argument('--title',
                        type=str,
                        default = None,
                        help='''Title string for the plot. Overrides the default
                        title. Exclusive with --extratitle''')
    parser.add_argument('--extratitle',
                        type=str,
                        default = None,
                        help='''Additional string for the plot to append to the
                        default title. Exclusive with --title''')

    parser.add_argument('--hardcopy',
                        type=str,
                        help='''Write the output to disk, instead of an interactive plot''')
    parser.add_argument('--terminal',
                        type=str,
                        help=r'''gnuplotlib terminal. The default is good almost always, so most people don't
                        need this option''')
    parser.add_argument('--set',
                        type=str,
                        action='append',
                        help='''Extra 'set' directives to gnuplotlib. Can be given multiple times''')
    parser.add_argument('--unset',
                        type=str,
                        action='append',
                        help='''Extra 'unset' directives to gnuplotlib. Can be given multiple times''')

    args = parser.parse_args()


    if args.title      is not None and \
       args.extratitle is not None:
        print("--title and --extratitle are exclusive", file=sys.stderr)
        sys.exit(1)

    return args


args = parse_args()




import numpy as np
import numpysane as nps
import gnuplotlib as gp
import pickle
import os.path

# I import the LOCAL mrcal
scriptdir = os.path.dirname(os.path.realpath(__file__))
sys.path[:0] = f"{scriptdir}/../..",
import mrcal

############ bias visualization
#
# I simulate pixel noise, and see what that does to the triangulation. Play with
# the geometric details to get a sense of how these behave

model0 = mrcal.cameramodel( intrinsics = ('LENSMODEL_PINHOLE',
                                          np.array((1000., 1000., 500., 500.))),
                            imagersize = np.array((1000,1000)) )
model1 = mrcal.cameramodel( intrinsics = ('LENSMODEL_PINHOLE',
                                          np.array((1100., 1100., 500., 500.))),
                            imagersize = np.array((1000,1000)) )


# square camera layout
t01  = np.array(( 1.,   0.1,  -0.2))
R01  = mrcal.R_from_r(np.array((0.001, -0.002, -0.003)))
Rt01 = nps.glue(R01, t01, axis=-2)

p  = np.array(args.observed_point)

q0 = mrcal.project(p, *model0.intrinsics())

sigma    = 0.1




cache_file = "/tmp/triangulation-study-cache.pickle"
if args.cache is None or args.cache == 'write':
    v0local_noisy, v1local_noisy,v0_noisy,v1_noisy,_,_,_,_ = \
        mrcal.synthetic_data. \
        _noisy_observation_vectors_for_triangulation(p,Rt01,
                                                     model0.intrinsics(),
                                                     model1.intrinsics(),
                                                     args.Nsamples,
                                                     sigma = sigma)
    p_sampled_geometric       = mrcal.triangulate_geometric(      v0_noisy,      v1_noisy,      t01 )
    p_sampled_lindstrom       = mrcal.triangulate_lindstrom(      v0local_noisy, v1local_noisy, Rt01 )
    p_sampled_leecivera_l1    = mrcal.triangulate_leecivera_l1(   v0_noisy,      v1_noisy,      t01 )
    p_sampled_leecivera_linf  = mrcal.triangulate_leecivera_linf( v0_noisy,      v1_noisy,      t01 )
    p_sampled_leecivera_mid2  = mrcal.triangulate_leecivera_mid2( v0_noisy,      v1_noisy,      t01 )
    p_sampled_leecivera_wmid2 = mrcal.triangulate_leecivera_wmid2(v0_noisy,      v1_noisy,      t01 )

    q0_sampled_geometric       = mrcal.project(p_sampled_geometric,      *model0.intrinsics())
    q0_sampled_lindstrom       = mrcal.project(p_sampled_lindstrom,      *model0.intrinsics())
    q0_sampled_leecivera_l1    = mrcal.project(p_sampled_leecivera_l1,   *model0.intrinsics())
    q0_sampled_leecivera_linf  = mrcal.project(p_sampled_leecivera_linf, *model0.intrinsics())
    q0_sampled_leecivera_mid2  = mrcal.project(p_sampled_leecivera_mid2, *model0.intrinsics())
    q0_sampled_leecivera_wmid2 = mrcal.project(p_sampled_leecivera_wmid2, *model0.intrinsics())

    range_sampled_geometric       = nps.mag(p_sampled_geometric)
    range_sampled_lindstrom       = nps.mag(p_sampled_lindstrom)
    range_sampled_leecivera_l1    = nps.mag(p_sampled_leecivera_l1)
    range_sampled_leecivera_linf  = nps.mag(p_sampled_leecivera_linf)
    range_sampled_leecivera_mid2  = nps.mag(p_sampled_leecivera_mid2)
    range_sampled_leecivera_wmid2 = nps.mag(p_sampled_leecivera_wmid2)

    if args.cache is not None:
        with open(cache_file,"wb") as f:
            pickle.dump((v0local_noisy,
                         v1local_noisy,
                         v0_noisy,
                         v1_noisy,
                         p_sampled_geometric,
                         p_sampled_lindstrom,
                         p_sampled_leecivera_l1,
                         p_sampled_leecivera_linf,
                         p_sampled_leecivera_mid2,
                         p_sampled_leecivera_wmid2,
                         q0_sampled_geometric,
                         q0_sampled_lindstrom,
                         q0_sampled_leecivera_l1,
                         q0_sampled_leecivera_linf,
                         q0_sampled_leecivera_mid2,
                         q0_sampled_leecivera_wmid2,
                         range_sampled_geometric,
                         range_sampled_lindstrom,
                         range_sampled_leecivera_l1,
                         range_sampled_leecivera_linf,
                         range_sampled_leecivera_mid2,
                         range_sampled_leecivera_wmid2),
                        f)
        print(f"Wrote cache to {cache_file}")
else:
    with open(cache_file,"rb") as f:
        (v0local_noisy,
         v1local_noisy,
         v0_noisy,
         v1_noisy,
         p_sampled_geometric,
         p_sampled_lindstrom,
         p_sampled_leecivera_l1,
         p_sampled_leecivera_linf,
         p_sampled_leecivera_mid2,
         p_sampled_leecivera_wmid2,
         q0_sampled_geometric,
         q0_sampled_lindstrom,
         q0_sampled_leecivera_l1,
         q0_sampled_leecivera_linf,
         q0_sampled_leecivera_mid2,
         q0_sampled_leecivera_wmid2,
         range_sampled_geometric,
         range_sampled_lindstrom,
         range_sampled_leecivera_l1,
         range_sampled_leecivera_linf,
         range_sampled_leecivera_mid2,
         range_sampled_leecivera_wmid2) = \
            pickle.load(f)



plot_options = {}
if args.set is not None:
    plot_options['set'] = args.set
if args.unset is not None:
    plot_options['unset'] = args.unset

if args.hardcopy is not None:
    plot_options['hardcopy'] = args.hardcopy
if args.terminal is not None:
    plot_options['terminal'] = args.terminal

if args.ellipses:
    # Plot the reprojected pixels and the fitted ellipses

    data_tuples = \
        [ *mrcal.utils._plot_args_points_and_covariance_ellipse( q0_sampled_geometric,      'geometric' ),
          *mrcal.utils._plot_args_points_and_covariance_ellipse( q0_sampled_lindstrom,      'lindstrom' ),
          *mrcal.utils._plot_args_points_and_covariance_ellipse( q0_sampled_leecivera_l1,   'lee-civera-l1' ),
          *mrcal.utils._plot_args_points_and_covariance_ellipse( q0_sampled_leecivera_linf, 'lee-civera-linf' ),
          *mrcal.utils._plot_args_points_and_covariance_ellipse( q0_sampled_leecivera_mid2, 'lee-civera-mid2' ),
          *mrcal.utils._plot_args_points_and_covariance_ellipse( q0_sampled_leecivera_wmid2,'lee-civera-wmid2' ), ]
    if not args.samples:
        # Not plotting samples. Get rid of all the "dots" I'm plotting
        data_tuples = [ t for t in data_tuples if \
                        not (isinstance(t[-1], dict) and \
                             '_with' in t[-1] and \
                             t[-1]['_with'] == 'dots') ]

    if args.title is not None:
        title = args.title
    else:
        title = 'Reprojected triangulated point'
    if args.extratitle is not None:
        title += ': ' + args.extratitle

    gp.plot( *data_tuples,
             ( q0,
               dict(_with     = 'points pt 3 ps 2',
                    tuplesize = -2,
                    legend    = 'Ground truth')),
             square = True,
             wait   = 'hardcopy' not in plot_options,
             title  = title,
             **plot_options)

elif args.ranges:
    # Plot the range distribution
    range_ref = nps.mag(p)


    if args.title is not None:
        title = args.title
    else:
        title = "Range distribution"
    if args.extratitle is not None:
        title += ': ' + args.extratitle
    gp.plot( nps.cat( range_sampled_geometric,
                      range_sampled_lindstrom,
                      range_sampled_leecivera_l1,
                      range_sampled_leecivera_linf,
                      range_sampled_leecivera_mid2,
                      range_sampled_leecivera_wmid2 ),
             legend = np.array(( 'range_sampled_geometric',
                                 'range_sampled_lindstrom',
                                 'range_sampled_leecivera_l1',
                                 'range_sampled_leecivera_linf',
                                 'range_sampled_leecivera_mid2',
                                 'range_sampled_leecivera_wmid2' )),
             histogram=True,
             binwidth=200,
             _with='lines',
             _set = f'arrow from {range_ref},graph 0 to {range_ref},graph 1 nohead lw 5',
             wait   = 'hardcopy' not in plot_options,
             title = title,
             **plot_options)

else:
    raise Exception("Getting here is a bug")