1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
|
#!/usr/bin/env python3
# Copyright (c) 2017-2023 California Institute of Technology ("Caltech"). U.S.
# Government sponsorship acknowledged. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
r'''Study the noncentral effects of this solve
SYNOPSIS
$ validate-noncentral.py [01].cameramodel
... plots pop up, showing the effect of removing points that are close to the
... lens. If they were causing poor fits due to noncentrality, we'd see
improved ... cross-validation
I take the optimization_inputs as they are, WITHOUT making perfect data, and I
re-solve the problem after throwing out points the percentile nearest
points. If noncentrality was an issue, this new solve would match reality
better, and the two solves would be closer to each other than the original poor
cross-validation
'''
import sys
import argparse
import re
import os
def parse_args():
parser = \
argparse.ArgumentParser(description = __doc__,
formatter_class=argparse.RawDescriptionHelpFormatter)
parser.add_argument('--mode',
choices=('too-close', 'too-far-from-center'),
default='too-close',
help='''What this tool does. "too-close": we throw out
some points that were too close to the camera.
"too-far-from-center": we throw out some points that
were observed too far from the imager center''')
parser.add_argument('--cull-percentile',
type=float,
default=10,
help='''The percentile of worst (too close, too far from
center of imager, ...) points to throw out''')
parser.add_argument('--gridn-width',
type = int,
default = 60,
help='''How densely we should sample the imager for the
uncertainty and cross-validation visualizations. Here we
just take the "width". The height will be automatically
computed based on the imager aspect ratio''')
parser.add_argument('--cbmax-diff',
type=float,
help='''The max-color to use for the diff plots. If
omitted, we use the default in
mrcal.show_projection_diff()''')
parser.add_argument('--cbmax-uncertainty',
type=float,
help='''The max-color to use for the uncertainty plots.
If omitted, we use the default in
mrcal.show_projection_uncertainty()''')
parser.add_argument('--hardcopy',
type=str,
help='''If given, we write the output plots to this
path. This path is given as DIR/FILE.EXTENSION. Multiple
plots will be made, to DIR/FILE-thing.EXTENSION''')
parser.add_argument('--terminal',
type=str,
help='''The gnuplot terminal to use for plots''')
parser.add_argument('models',
type=str,
nargs='+',
help='''The camera models to process. This requires an
even number of models, at least 2. If we are given
exactly two models, we use those two. If we are given
N>2 models, we join data from the first N/2 models and
the second N/2 models into two bigger sets of
calibration data, and we process those''')
args = parser.parse_args()
Nmodels = len(args.models)
if (Nmodels % 2):
print("We require an EVEN number of models", file=sys.stderr)
sys.exit(1)
return args
args = parse_args()
# I import the LOCAL mrcal
sys.path[:0] = f"{os.path.dirname(os.path.realpath(__file__))}/..",
import mrcal
import mrcal.model_analysis
import numpy as np
import numpysane as nps
import copy
import gnuplotlib as gp
def join_inputs(*optimization_inputs_all):
r'''Combines multiple calibration datasets into one
Intrinsics from the first input'''
if not all(o['intrinsics'].shape[-2] == 1 for o in optimization_inputs_all):
raise Exception('Everything must be MONOCULAR chessboard observations')
if not all(o.get('rt_cam_ref') is None or \
o['rt_cam_ref'].size == 0 \
for o in optimization_inputs_all):
raise Exception('Everything must be monocular chessboard observations with a STATIONARY camera')
if not all(o.get('points') is None or \
o['points'].size == 0 \
for o in optimization_inputs_all):
raise Exception('Everything must be monocular CHESSBOARD observations')
optimization_inputs = copy.deepcopy(optimization_inputs_all[0])
optimization_inputs['rt_ref_frame'] = \
nps.glue( *[ o['rt_ref_frame'] \
for o in optimization_inputs_all],
axis = -2 )
if not all( not np.any( o['indices_frame_camintrinsics_camextrinsics'][:,0] - np.arange(len(o['rt_ref_frame']))) \
for o in optimization_inputs_all ):
raise Exception("I assume frame indices starting at 0 and incrementing by 1")
Nobservations = \
sum(len(o['indices_frame_camintrinsics_camextrinsics']) \
for o in optimization_inputs_all)
optimization_inputs['indices_frame_camintrinsics_camextrinsics'] = \
np.zeros((Nobservations,3), dtype=np.int32)
optimization_inputs['indices_frame_camintrinsics_camextrinsics'][:,0] = \
np.arange(Nobservations, dtype=np.int32)
optimization_inputs['indices_frame_camintrinsics_camextrinsics'][:,2] = -1
optimization_inputs['observations_board'] = \
nps.glue( *[ o['observations_board'] \
for o in optimization_inputs_all],
axis = -4 )
optimization_inputs['imagepaths'] = \
nps.glue( *[ o['imagepaths'] \
for o in optimization_inputs_all],
axis = -1 )
return optimization_inputs
models = [mrcal.cameramodel(f) for f in args.models]
if len(models) > 2:
Nmodels = args.models
o0 = join_inputs( *[models[i].optimization_inputs() for i in range(0,Nmodels//2)] )
o1 = join_inputs( *[models[i].optimization_inputs() for i in range(Nmodels//2,Nmodels)] )
mrcal.optimize(**o0)
mrcal.optimize(**o1)
models = ( mrcal.cameramodel(optimization_inputs = o0,
icam_intrinsics = 0),
mrcal.cameramodel(optimization_inputs = o1,
icam_intrinsics = 0) )
percentile = args.cull_percentile
mode = args.mode
if mode == 'too-close':
what_culling = f'{percentile}% nearest'
what = 'range'
binwidth = 0.01
cull_nearest = True
elif mode == 'too-far-from-center':
what_culling = f'{percentile}% off-center'
what = 'pixel distance off-center'
binwidth = 20
cull_nearest = False
percentile = 100 - percentile
else:
# can't happen; checked above
raise
kwargs_show_uncertainty = dict()
if args.cbmax_uncertainty is not None:
kwargs_show_uncertainty['cbmax'] = args.cbmax_uncertainty
kwargs_show_diff = dict()
if args.cbmax_diff is not None:
kwargs_show_diff['cbmax'] = args.cbmax_diff
if args.hardcopy is None:
filename = None
else:
hardcopy_base,hardcopy_extension = os.path.splitext(args.hardcopy)
def reoptimize(imodel, model):
print('')
optimization_inputs = model.optimization_inputs()
observations_board = optimization_inputs['observations_board']
Noutliers = \
np.count_nonzero(observations_board[...,2] <= 0)
print(f"Before culling the {what_culling} points: {Noutliers=}")
if mode == 'too-close':
p = mrcal.hypothesis_board_corner_positions(**optimization_inputs)[0]
r = nps.mag(p)
elif mode == 'too-far-from-center':
if not mrcal.lensmodel_metadata_and_config(model.intrinsics()[0])['has_core']:
raise Exception("Here I'm assuming the model has an fxycxy core")
qcenter = model.intrinsics()[1][2:4]
r = nps.mag(observations_board[...,:2] - qcenter)
else:
# can't happen; checked above
raise
rthreshold = np.percentile(r.ravel(), percentile)
print(f"{what.capitalize()} at {percentile}-th percentile: {rthreshold:.2f}")
if False:
# This is a "directions" plot off residuals, with a
# range,qdiff_off_center domain. Hopefully I'll be able to see
# model-error patterns off this
x_board = mrcal.measurements_board(optimization_inputs)
p = mrcal.hypothesis_board_corner_positions(**optimization_inputs)[2]
r = nps.mag(p)
qcenter = model.intrinsics()[1][2:4]
idx_inliers = observations_board[...,2].ravel() > 0.
qobs_off_center = \
nps.clump(observations_board[...,:2], n=3)[idx_inliers] - \
qcenter
mag_qobs_off_center = nps.mag(qobs_off_center)
qobs_dir_off_center = np.array(qobs_off_center)
# to avoid /0
idx = mag_qobs_off_center>0
qobs_dir_off_center[idx] /= nps.dummy(mag_qobs_off_center[idx],
axis = -1)
x_board_radial_off_center = nps.inner(x_board, qobs_dir_off_center)
th = 180./np.pi * np.arctan2(x_board[...,1], x_board[...,0])
# hoping to see low-range points imply clustering in the residual
# direction
gp.plot( r,
mag_qobs_off_center,
th,
cbrange = [-180.,180.],
_with = 'points pt 7 palette',
_tuplesize = 3,
_set = 'palette defined ( 0 "#00ffff", 0.5 "#80ffff", 1 "#ffffff") model HSV')
# Hoping to see low ranges imply a non-zero bias on x_board_radial_off_center
gp.plot(r, x_board_radial_off_center, _with='points')
import IPython
IPython.embed()
sys.exit()
if args.hardcopy is not None:
filename = f"{hardcopy_base}-histogram-measurements-cull-camera{imodel}{hardcopy_extension}"
else:
filename = None
histogram = gp.gnuplotlib()
histogram.plot(r.ravel(),
histogram = True,
binwidth = binwidth,
_set = f'arrow from {rthreshold},graph 0 to {rthreshold},graph 1 nohead front',
title = f'Histogram of {what}, with the {what_culling} points marked: camera {imodel}',
hardcopy = filename,
terminal = args.terminal)
if args.hardcopy is not None:
print(f"Wrote '{filename}'")
if cull_nearest:
i_cull = r.ravel() < rthreshold
else:
i_cull = r.ravel() > rthreshold
nps.clump(observations_board, n=3)[i_cull, 2] = -1
Noutliers = \
np.count_nonzero(observations_board[...,2] <= 0)
print(f"After culling the {what_culling} points: {Noutliers=}")
mrcal.optimize(**optimization_inputs)
return (mrcal.cameramodel(optimization_inputs = optimization_inputs,
icam_intrinsics = 0),
histogram)
plots = []
models_plots_reoptimized = [ reoptimize(i,m) for i,m in enumerate(models) ]
models_reoptimized = [ m for (m,p) in models_plots_reoptimized ]
plots.extend([ p for (m,p) in models_plots_reoptimized ])
for i,m in enumerate(models_reoptimized):
if args.hardcopy is not None:
filename = f"{hardcopy_base}-uncertainty-post-cull-camera{i}{hardcopy_extension}"
plots.append( \
mrcal.show_projection_uncertainty(
m,
gridn_width = args.gridn_width,
title = f'Uncertainty after cutting the {what_culling} points: camera {i}',
hardcopy = filename,
terminal = args.terminal,
**kwargs_show_uncertainty) )
if args.hardcopy is not None:
print(f"Wrote '{filename}'")
for i in range(len(models)):
if args.hardcopy is not None:
filename = f"{hardcopy_base}-diff-from-cull-camera{i}{hardcopy_extension}"
plots.append( \
mrcal.show_projection_diff( \
(models[i],models_reoptimized[i]),
gridn_width = args.gridn_width,
use_uncertainties = False,
focus_radius = 100,
title = f'Reoptimizing after cutting the {what_culling} points: resulting diff for camera {i}',
hardcopy = filename,
terminal = args.terminal,
**kwargs_show_diff)[0] )
if args.hardcopy is not None:
print(f"Wrote '{filename}'")
if len(models) != 2:
print("WARNING: validate_noncentral() is intended to work with exactly two models. Got something different; not showing the new cross-validation diff")
else:
if args.hardcopy is not None:
filename = f"{hardcopy_base}-cross-validation-pre-cull-camera{i}{hardcopy_extension}"
plots.append( \
mrcal.show_projection_diff((models[0],models[1]),
gridn_width = args.gridn_width,
use_uncertainties = False,
focus_radius = 100,
title = f'Original, poor cross-validation diff',
hardcopy = filename,
terminal = args.terminal,
**kwargs_show_diff)[0])
if args.hardcopy is not None:
print(f"Wrote '{filename}'")
if args.hardcopy is not None:
filename = f"{hardcopy_base}-cross-validation-post-cull-camera{i}{hardcopy_extension}"
plots.append( \
mrcal.show_projection_diff((models_reoptimized[0],models_reoptimized[1]),
gridn_width = args.gridn_width,
use_uncertainties = False,
focus_radius = 100,
title = f'Cross-validation diff after cutting the {what_culling} points',
hardcopy = filename,
terminal = args.terminal,
**kwargs_show_diff)[0])
if args.hardcopy is not None:
print(f"Wrote '{filename}'")
# Needs gnuplotlib >= 0.42
gp.wait(*plots)
|