1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
|
#!/usr/bin/env python3
# Copyright (c) 2017-2023 California Institute of Technology ("Caltech"). U.S.
# Government sponsorship acknowledged. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
r'''Study the uncertainty as a predictor of cross-validation diffs
SYNOPSIS
$ validate-uncertainty.py camera.cameramodel
... plots pop up, showing the uncertainty prediction from the given models,
... and cross-validation diff obtained from creating perfect data corrupted
... ONLY with perfect gaussian noise. If the noise on the inputs was the ONLY
... source of error (what the uncertainty modeling expects), then the
... uncertainty plots would predict the cross-validation plots well
A big feature of mrcal is the ability to gauge the accuracy of the solved
intrinsics: by computing the projection uncertainty. This measures the
sensitivity of the solution to noise in the inputs. So using this as a measure
of calibration accuracy makes a core assumption: this input noise is the only
source of error. This assumption is often false, so cross-validation diffs can
be computed to sample the full set of error sources, not just this one.
Sometimes we see cross-validation results higher than what the uncertainties
promise us, and figuring out the reason can be challenging. This tool serves to
validate the techniques to help in that debugging.
'''
import sys
import argparse
import re
import os
def parse_args():
parser = \
argparse.ArgumentParser(description = __doc__,
formatter_class=argparse.RawDescriptionHelpFormatter)
parser.add_argument('--num-samples',
type = int,
default = 16,
help='''How many noisy-data samples to process''')
parser.add_argument('--observed-pixel-uncertainty',
type = float,
help='''How much noise to inject into perfect solves. If
omitted, we infer this noise level from the model''')
parser.add_argument('--gridn-width',
type = int,
default = 60,
help='''How densely we should sample the imager for the
uncertainty and cross-validation visualizations. Here we
just take the "width". The height will be automatically
computed based on the imager aspect ratio''')
parser.add_argument('--cbmax-diff',
type=float,
help='''The max-color to use for the diff plots. If
omitted, we use the default in
mrcal.show_projection_diff()''')
parser.add_argument('--cbmax-uncertainty',
type=float,
help='''The max-color to use for the uncertainty plots.
If omitted, we use the default in
mrcal.show_projection_uncertainty()''')
parser.add_argument('--hardcopy',
type=str,
help='''If given, we write the output plots to this
path. This path is given as DIR/FILE.EXTENSION. Multiple
plots will be made, to DIR/FILE-thing.EXTENSION''')
parser.add_argument('--terminal',
type=str,
help='''The gnuplot terminal to use for plots''')
parser.add_argument('model',
type=str,
help='''The camera model to process''')
return parser.parse_args()
args = parse_args()
# I import the LOCAL mrcal
sys.path[:0] = f"{os.path.dirname(os.path.realpath(__file__))}/..",
import mrcal
import mrcal.model_analysis
import numpy as np
import numpysane as nps
import gnuplotlib as gp
import copy
# Today I hardcode this. I'm mostly thinking of monocular chessboard solves
# only. Presumably other behave the same way
icam_intrinsics = 0
if args.hardcopy is None:
filename = None
else:
hardcopy_base,hardcopy_extension = os.path.splitext(args.hardcopy)
def apply_noise(optimization_inputs,
*,
observed_pixel_uncertainty):
noise_nominal = \
observed_pixel_uncertainty * \
np.random.randn(*optimization_inputs['observations_board'][...,:2].shape)
weight = nps.dummy( optimization_inputs['observations_board'][...,2],
axis = -1 )
weight[ weight<=0 ] = 1. # to avoid dividing by 0
optimization_inputs['observations_board'][...,:2] += \
noise_nominal / weight
kwargs_show_uncertainty = dict()
if args.cbmax_uncertainty is not None:
kwargs_show_uncertainty['cbmax'] = args.cbmax_uncertainty
kwargs_show_diff = dict()
if args.cbmax_diff is not None:
kwargs_show_diff['cbmax'] = args.cbmax_diff
model = mrcal.cameramodel(args.model)
optimization_inputs = model.optimization_inputs()
if args.observed_pixel_uncertainty is not None:
observed_pixel_uncertainty = args.observed_pixel_uncertainty
else:
observed_pixel_uncertainty = mrcal.model_analysis._observed_pixel_uncertainty_from_inputs(optimization_inputs)
print(f"Inferred {observed_pixel_uncertainty=:.2f}")
plots = []
if args.hardcopy is not None:
filename = f"{hardcopy_base}-uncertainty-baseline{hardcopy_extension}"
plots.append( \
mrcal.show_projection_uncertainty(model,
gridn_width = args.gridn_width,
observed_pixel_uncertainty = observed_pixel_uncertainty,
title = f'Baseline uncertainty with {observed_pixel_uncertainty=}',
hardcopy = filename,
terminal = args.terminal,
**kwargs_show_uncertainty) )
if args.hardcopy is not None:
print(f"Wrote '{filename}'")
optimization_inputs_perfect = optimization_inputs
mrcal.make_perfect_observations(optimization_inputs_perfect,
observed_pixel_uncertainty = 0)
def model_sample():
optimization_inputs = copy.deepcopy(optimization_inputs_perfect)
apply_noise(optimization_inputs,
observed_pixel_uncertainty = observed_pixel_uncertainty)
mrcal.optimize(**optimization_inputs)
return mrcal.cameramodel(optimization_inputs = optimization_inputs,
icam_intrinsics = icam_intrinsics)
model0 = model_sample()
models1 = [model_sample() for _ in range(args.num_samples)]
if args.hardcopy is not None:
filename = f"{hardcopy_base}-uncertainty-perfect{hardcopy_extension}"
plots.append( \
mrcal.show_projection_uncertainty(model0,
gridn_width = args.gridn_width,
observed_pixel_uncertainty = observed_pixel_uncertainty,
title = 'Uncertainty with perfect observations + noise; should be very close to baseline',
hardcopy = filename,
terminal = args.terminal,
**kwargs_show_uncertainty) )
if args.hardcopy is not None:
print(f"Wrote '{filename}'")
def gnuplotlib_normalize_options_dict(d):
d2 = {}
for key in d:
gp.add_plot_option(d2, key, d[key])
return d2
gridn_plot = int( np.ceil(np.sqrt(len(models1)) ) )
diff_multiplot_args = []
for model1 in models1:
data_tuples,plot_options = \
mrcal.show_projection_diff((model0,model1),
gridn_width = args.gridn_width,
use_uncertainties = False,
focus_radius = np.min(model.imagersize())//8,
title = '',
unset=('key',
'xtics',
'ytics',),
contour_labels_styles = None, # no label
_set=('lmargin 0',
'tmargin 0',
'rmargin 0',
'bmargin 0',
),
return_plot_args = True,
**kwargs_show_diff)[0]
plot_options = gnuplotlib_normalize_options_dict(plot_options)
subplot_options = dict()
for o in plot_options:
if o in gp.knownSubplotOptions:
subplot_options[o] = plot_options[o]
diff_multiplot_args.append( (*data_tuples,subplot_options) )
# massage one of the plot_options from the subplots; they're probably all the same
_plot_options = copy.copy(plot_options)
plot_options = dict()
for o in _plot_options:
if o not in gp.knownSubplotOptions:
plot_options[o] = _plot_options[o]
if args.hardcopy is not None:
filename = f"{hardcopy_base}-diff-samples{hardcopy_extension}"
diff_multiplot = gp.gnuplotlib( title = 'Simulated cross-validation diff samples comparing two perfectly-noised models',
multiplot = f'layout {gridn_plot},{gridn_plot}',
hardcopy = filename,
terminal = args.terminal,
**plot_options )
diff_multiplot.plot( *diff_multiplot_args )
if args.hardcopy is not None:
print(f"Wrote '{filename}'")
plots.append(diff_multiplot)
if args.hardcopy is not None:
filename = f"{hardcopy_base}-diff-joint-stdev{hardcopy_extension}"
plots.append( mrcal.show_projection_diff([model0, *models1],
gridn_width = args.gridn_width,
use_uncertainties = False,
focus_radius = np.min(model.imagersize())//8,
title = 'Simulated cross-validation diff: stdev of of ALL the samples',
hardcopy = filename,
terminal = args.terminal,
**kwargs_show_diff)[0])
if args.hardcopy is not None:
print(f"Wrote '{filename}'")
if args.hardcopy is None:
# Needs gnuplotlib >= 0.42
gp.wait(*plots)
|