1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
|
#!/usr/bin/env python3
r'''Checks the C and Python implementations of stereo_range()
This test needs external data, so it isn't included in the enabled-by-default set
'''
import sys
import numpy as np
import numpysane as nps
import os
testdir = os.path.dirname(os.path.realpath(__file__))
# I import the LOCAL mrcal since that's what I'm testing
sys.path[:0] = f"{testdir}/..",
import mrcal
import testutils
import cv2
# This test needs data external to this repository. Can be downloaded like this:
if False:
import subprocess
subprocess.check_output("wget -O /tmp/0.cameramodel https://mrcal.secretsauce.net/external/2022-11-05--dtla-overpass--samyang--alpha7/stereo/0.cameramodel && " +
"wget -O /tmp/1.cameramodel https://mrcal.secretsauce.net/external/2022-11-05--dtla-overpass--samyang--alpha7/stereo/1.cameramodel && "
"wget -O /tmp/0.jpg https://mrcal.secretsauce.net/external/2022-11-05--dtla-overpass--samyang--alpha7/stereo/0.jpg && "
"wget -O /tmp/1.jpg https://mrcal.secretsauce.net/external/2022-11-05--dtla-overpass--samyang--alpha7/stereo/1.jpg",
shell = True)
model_filenames=("/tmp/0.cameramodel",
"/tmp/1.cameramodel")
image_filenames=("/tmp/0.jpg",
"/tmp/1.jpg")
pixels_per_deg_az = -.25
pixels_per_deg_el = -.25
az_fov_deg = dict(LENSMODEL_LATLON = 160,
LENSMODEL_PINHOLE = 120)
el_fov_deg = 60
az0_deg = 0
el0_deg = 0
try:
models = [mrcal.cameramodel(f) \
for f in model_filenames]
except FileNotFoundError:
print("Data not found. Commands to download appear at the top of this script")
sys.exit(1)
images = [mrcal.load_image(f, bits_per_pixel = 8, channels = 1) \
for f in image_filenames]
clahe = cv2.createCLAHE()
clahe.setClipLimit(8)
images = [ clahe.apply(image) for image in images ]
# This is a hard-coded property of the OpenCV StereoSGBM implementation
disparity_scale = 16
q = np.array(((30, 100),
(300, 200),
(1000, 400),
(500, 300),
(80, 500),
(400, 350),
(900, 350),
(1100, 350),
(1400, 350),
(400, 450),
(900, 450),
(1100, 450),
(1400, 450),
(1300, 450)))
for rectification_model in ('LENSMODEL_LATLON',
'LENSMODEL_PINHOLE',
):
models_rectified = \
mrcal.rectified_system(models,
az_fov_deg = az_fov_deg[rectification_model],
el_fov_deg = el_fov_deg,
az0_deg = az0_deg,
el0_deg = el0_deg,
pixels_per_deg_az = pixels_per_deg_az,
pixels_per_deg_el = pixels_per_deg_el,
rectification_model = rectification_model)
for disparity_min in (0,10,):
disparity_max = 128
# round to nearest multiple of disparity_scale. The OpenCV StereoSGBM
# implementation requires this
num_disparities = disparity_max - disparity_min
num_disparities = disparity_scale*round(num_disparities/disparity_scale)
stereo_sgbm = \
cv2.StereoSGBM_create(minDisparity = disparity_min,
numDisparities = num_disparities,
P1 = 600,
P2 = 2400,
disp12MaxDiff = 1,
uniquenessRatio = 5,
speckleWindowSize = 100,
speckleRange = 2,
mode = cv2.StereoSGBM_MODE_SGBM)
rectification_maps = mrcal.rectification_maps(models, models_rectified)
images_rectified = [mrcal.transform_image(images[i],
rectification_maps[i]) \
for i in range(2)]
disparity = stereo_sgbm.compute(*images_rectified)
mask_valid = \
(disparity > 0) * \
(disparity >= disparity_min*disparity_scale) * \
(disparity <= disparity_max*disparity_scale)
ranges_dense = \
mrcal.stereo_range( disparity,
models_rectified,
disparity_scale = disparity_scale,
disparity_min = disparity_min)
mask_valid_ranges_dense = ranges_dense > 0
ranges_dense_python = \
mrcal.stereo._stereo_range_python( disparity,
models_rectified,
disparity_scale = disparity_scale,
disparity_min = disparity_min)
mask_valid_ranges_dense_pythion = ranges_dense_python > 0
ranges_sparse = \
mrcal.stereo_range( disparity[q[:,1], q[:,0]],
models_rectified,
qrect0 = q,
disparity_scale = disparity_scale,
disparity_min = disparity_min)
ranges_sparse_python = \
mrcal.stereo._stereo_range_python( disparity[q[:,1], q[:,0]],
models_rectified,
qrect0 = q,
disparity_scale = disparity_scale,
disparity_min = disparity_min)
testutils.confirm_equal( ranges_dense,
ranges_dense_python,
worstcase = True,
eps = 1e-3,
msg=f'Dense stereo_range() matches in C and Python: rectification_model={rectification_model} disparity_min={disparity_min}')
testutils.confirm_equal( ranges_sparse,
ranges_sparse_python,
worstcase = True,
eps = 1e-3,
msg=f'Sparse stereo_range() matches in C and Python: rectification_model={rectification_model} disparity_min={disparity_min}')
testutils.confirm_equal( ranges_sparse,
ranges_dense[q[:,1], q[:,0]],
worstcase = True,
eps = 1e-3,
msg=f'Sparse and dense stereo_range() match: rectification_model={rectification_model} disparity_min={disparity_min}')
testutils.confirm_equal( mask_valid_ranges_dense,
mask_valid,
msg=f'Dense stereo_range() invalid values handled correctly: rectification_model={rectification_model} disparity_min={disparity_min}')
testutils.confirm_equal( mask_valid_ranges_dense_pythion,
mask_valid,
msg=f'Dense stereo_range() in Python: invalid values handled correctly: rectification_model={rectification_model} disparity_min={disparity_min}')
testutils.confirm( np.all(ranges_dense[~mask_valid] == 0.),
msg=f'Dense stereo_range() values are all 0 in invalid areas: rectification_model={rectification_model} disparity_min={disparity_min}')
if False:
range_image_limits = (1,1000)
disparity_colored = mrcal.apply_color_map(disparity,
a_min = disparity_min*disparity_scale,
a_max = disparity_max*disparity_scale)
ranges_colored = mrcal.apply_color_map(ranges_dense,
a_min = range_image_limits[0],
a_max = range_image_limits[1])
mrcal.save_image("/tmp/disparity.png", disparity_colored)
mrcal.save_image("/tmp/range.png", ranges_colored)
print("Wrote /tmp/disparity.png and /tmp/range.png")
testutils.finish()
|