1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
|
#!/usr/bin/env python3
import sys
import numpy as np
import numpysane as nps
import os
testdir = os.path.dirname(os.path.realpath(__file__))
# I import the LOCAL mrcal since that's what I'm testing
sys.path[:0] = f"{testdir}/..",
import mrcal
import testutils
from test_calibration_helpers import grad
import scipy.optimize
# I want the RNG to be deterministic
np.random.seed(0)
############### World layout
# camera0 is the "reference"
model0 = mrcal.cameramodel( intrinsics = ('LENSMODEL_PINHOLE',
np.array((1000., 1000., 500., 500.))),
imagersize = np.array((1000,1000)) )
model1 = mrcal.cameramodel( intrinsics = ('LENSMODEL_PINHOLE',
np.array((1100., 1100., 500., 500.))),
imagersize = np.array((1000,1000)) )
# All the callback functions can broadcast on p,v
@nps.broadcast_define( ((3,), (3,), (3,), (3,)),
())
def callback_l2_geometric(p, v0, v1, t01):
if p[2] < 0: return 1e6
distance_p_v0 = nps.mag(p - nps.inner(p, v0)/nps.norm2(v0) * v0)
distance_p_v1 = nps.mag(p-t01 - nps.inner(p-t01,v1)/nps.norm2(v1) * v1)
return np.abs(distance_p_v0) + np.abs(distance_p_v1)
@nps.broadcast_define( ((3,), (3,), (3,), (3,)),
())
def callback_l2_angle(p, v0, v1, t01):
costh0 = nps.inner(p, v0) / np.sqrt(nps.norm2(p) * nps.norm2(v0))
costh1 = nps.inner(p-t01,v1) / np.sqrt(nps.norm2(p-t01) * nps.norm2(v1))
th0 = np.arccos(min(costh0, 1.0))
th1 = np.arccos(min(costh1, 1.0))
return th0*th0 + th1*th1
@nps.broadcast_define( ((3,), (3,), (3,), (3,)),
())
def callback_l1_angle(p, v0, v1, t01):
costh0 = nps.inner(p, v0) / np.sqrt(nps.norm2(p) * nps.norm2(v0))
costh1 = nps.inner(p-t01,v1) / np.sqrt(nps.norm2(p-t01) * nps.norm2(v1))
th0 = np.arccos(min(costh0, 1.0))
th1 = np.arccos(min(costh1, 1.0))
return np.abs(th0) + np.abs(th1)
@nps.broadcast_define( ((3,), (3,), (3,), (3,)),
())
def callback_linf_angle(p, v0, v1, t01):
costh0 = nps.inner(p, v0) / np.sqrt(nps.norm2(p) * nps.norm2(v0))
costh1 = nps.inner(p-t01,v1) / np.sqrt(nps.norm2(p-t01) * nps.norm2(v1))
# Simpler function that has the same min
return (1-min(costh0, costh1)) * 1e9
# th0 = np.arccos(min(costh0, 1.0))
# th1 = np.arccos(min(costh1, 1.0))
# return max(np.abs(th0), np.abs(th1))
@nps.broadcast_define( ((3,), (3,), (3,), (4,3)),
())
def callback_l2_reprojection(p, v0local, v1local, Rt01):
dq0 = \
mrcal.project(p, *model0.intrinsics()) - \
mrcal.project(v0local, *model0.intrinsics())
dq1 = \
mrcal.project(mrcal.transform_point_Rt(mrcal.invert_Rt(Rt01),p),
*model1.intrinsics()) - \
mrcal.project(v1local, *model1.intrinsics())
return nps.norm2(dq0) + nps.norm2(dq1)
# can broadcast on p
def test_geometry( Rt01, p, whatgeometry,
out_of_bounds = False,
check_gradients = False):
R01 = Rt01[:3,:]
t01 = Rt01[ 3,:]
# p now has shape (Npoints,3). The leading dims have been flattened
p = p.reshape( p.size // 3, 3)
Npoints = len(p)
# p has shape (Npoints,3)
# v has shape (Npoints,2)
v0local_noisy, v1local_noisy,v0_noisy,v1_noisy,q0_ref,q1_ref,q0_noisy,q1_noisy = \
[v[...,0,:] for v in \
mrcal.synthetic_data.
_noisy_observation_vectors_for_triangulation(p, Rt01,
model0.intrinsics(),
model1.intrinsics(),
1,
sigma = 0.1)]
# For simpler code, I extend t01,Rt01 to have shape (Npoints,...), like the
# other arguments
t01 = np.ones( (Npoints,1 ), ) * t01
Rt01 = np.ones( (Npoints,1,1), ) * Rt01
scenarios = \
( (mrcal.triangulate_geometric, callback_l2_geometric, v0_noisy, v1_noisy, t01),
(mrcal.triangulate_leecivera_l1, callback_l1_angle, v0_noisy, v1_noisy, t01),
(mrcal.triangulate_leecivera_linf, callback_linf_angle, v0_noisy, v1_noisy, t01),
(mrcal.triangulate_leecivera_mid2, None, v0_noisy, v1_noisy, t01),
(mrcal.triangulate_leecivera_wmid2, None, v0_noisy, v1_noisy, t01),
(mrcal.triangulate_lindstrom, callback_l2_reprojection, v0local_noisy, v1local_noisy, Rt01),
(mrcal.triangulation._triangulated_error, None, v0_noisy, v1_noisy, t01),
)
# I try out several finite-difference step sizes, and pick the best one
steps_empirical = [1e-3,1e-5,1e-7]
for scenario in scenarios:
f, callback = scenario[:2]
# (v0,v1,t01)
args = scenario[2:]
result = f(*args, get_gradients = True)
p_reported = result[0]
if f is mrcal.triangulation._triangulated_error:
de_dv1,de_dt01 = result[1:]
else:
dp_dv0,dp_dv1,dp_dt01 = result[1:]
what = f"{whatgeometry} {f.__name__}"
def do_check_gradient(d_dv0, d_dv1, d_dt01):
grads = (d_dv0, d_dv1, d_dt01)
for ipoint in range(Npoints):
args_this = [a[ipoint] for a in args]
for ivar in range(3):
if grads[ivar] is None: continue
# shape (Nsteps, *shape_grad)
grad_empirical = \
np.array([ grad( lambda x: f( *args_this[:ivar],
x,
*args_this[ivar+1:]),
args_this[ivar],
step = step) \
for step in steps_empirical])
err_empirical = \
testutils.relative_diff(grads[ivar][ipoint],
grad_empirical,
eps = 1e-6)
# I take the gradient corresponding to the least error
try:
grad_empirical_best = \
np.take_along_axis(grad_empirical,
np.argmin(np.abs( err_empirical),
axis=0,
keepdims=True),
axis=0 )
have_keepdims = True
except TypeError:
have_keepdims = False
if not have_keepdims:
print("SKIPPING GRADIENT TEST; this numpy is too old")
else:
testutils.confirm_equal( grads[ivar][ipoint], grad_empirical_best,
relative = True,
worstcase = True,
msg = f"{what}: grad(ipoint={ipoint}, ivar={ivar})",
eps = 4e-2,
reldiff_eps = 1e-6)
if f is mrcal.triangulation._triangulated_error:
# triangulation._triangulated_error() gets lots of special treatment
# since it's a scalar, and works just fine with divergent rays and
# doesn't report the derr/dv0 gradient
if not out_of_bounds:
err_reported = p_reported
p_mid2 = mrcal.triangulate_leecivera_mid2(*args)
def angle_error__assume_small(v0,v1):
costh = nps.inner(v0,v1) / np.sqrt(nps.norm2(v0)*nps.norm2(v1))
# The angle is assumed small, so cos(th) ~ 1 - th*th/2.
# -> th ~ sqrt( 2*(1 - cos(th)) )
th_sq = costh*(-2.) + 2.
th_sq[th_sq < 0] *= 0.
return np.sqrt(th_sq)
err_mid2 = 2 * angle_error__assume_small(args[0], p_mid2)
testutils.confirm_equal( err_reported, err_mid2,
relative = True,
worstcase = True,
msg = f"{what}: result should be close to triangulate_leecivera_mid2()",
eps = 1e-3)
# I do this regardless of if check_gradients. Because I want to
# check the divergent cases too
do_check_gradient(None, # de/dv0 not given in this path
de_dv1,
de_dt01)
continue
if out_of_bounds:
p_optimized = np.zeros(p_reported.shape)
testutils.confirm_equal( p_reported, p_optimized,
relative = False,
worstcase = True,
msg = what,
eps = 1e-3)
else:
# Check all the gradients
if check_gradients:
do_check_gradient(dp_dv0,
dp_dv1,
dp_dt01)
if callback is not None:
# I run an optimization to directly optimize the quantity each triangulation
# routine is supposed to be optimizing, and then I compare
p_optimized = \
nps.cat(*[ scipy.optimize.minimize(callback,
p_reported[ipoint], # seed from the "right" value
args = (args[0][ipoint], args[1][ipoint], args[2][ipoint]),
method = 'Nelder-Mead',
# options = dict(disp = True)
)['x'] \
for ipoint in range(Npoints) ])
# print( f"{what} p reported,optimized:\n{nps.cat(p_reported, p_optimized)}" )
# print( f"{what} p_err: {p_reported - p_optimized}" )
# print( f"{what} optimum reported/optimized:\n{callback(p_reported, *args)/callback(p_optimized, *args)}" )
testutils.confirm_equal( p_reported, p_optimized,
relative = True,
worstcase = True,
msg = what,
eps = 1e-3)
else:
# No callback defined. Compare projected q
q0 = mrcal.project(p_reported,
*model0.intrinsics())
q1 = mrcal.project(mrcal.transform_point_Rt(mrcal.invert_Rt(Rt01),
p_reported),
*model1.intrinsics())
testutils.confirm_equal( q0, q0_ref,
relative = False,
worstcase = True,
msg = f'{what} q0',
eps = 25.)
testutils.confirm_equal( q1, q1_ref,
relative = False,
worstcase = True,
msg = f'{what} q1',
eps = 25.)
# square camera layout
t01 = np.array(( 1., 0.1, -0.2))
R01 = mrcal.R_from_r(np.array((0.001, -0.002, -0.003)))
Rt01 = nps.glue(R01, t01, axis=-2)
p = np.array((( 300., 20., 2000.), # far away AND center-ish
(-310., 18., 2000.),
( 30., 290., 1500.), # far away AND center-ish
(-31., 190., 1500.),
( 3000., 200., 2000.), # far away AND off to either side
(-3100., 180., 2000.),
( 300., 2900., 1500.), # far away AND off up/down
(-310., 1980., 1500.),
( 3000., -200., 20. ), # very close AND off to either side
(-3100., 180., 20. ),
## These should work, but the gradients do not match. I do not
## know why, and I just spent a whole day trying to figure it out.
## Will look later
# ( 300., 2900., 15. ), # very close AND off up/down
# (-310., 1980., 15. )
))
test_geometry(Rt01, p, "square-camera-geometry", check_gradients = True)
# Not checking gradients anymore. If the above all pass, the rest will too.
# Turning on the checks will slow stuff down and create more console spew. AND
# some test may benignly fail because of the too-small or too-large central
# difference steps
# cameras facing at each other
t01 = np.array(( 0, 0, 100.0 ))
R01 = mrcal.R_from_r(np.array((0.001, np.pi+0.002, -0.003)))
Rt01 = nps.glue(R01, t01, axis=-2)
p = np.array((( 3., 2., 20.), # center-ish
(-1000., 18., 20.), # off to various sides
(1000., 29., 50.),
## These should work, but the gradients do not match. I do not
## know why, and I just spent a whole day trying to figure it out.
## Will look later
# (-31., 1900., 70.),
# (-11., -2000., 95.),
))
test_geometry(Rt01, p, "cameras-facing-each-other", check_gradients = False)
p = np.array((( 3., 2., 101.), # center-ish
(-11., -2000., -5.),
))
test_geometry(Rt01, p, "cameras-facing-each-other out-of-bounds", out_of_bounds = True)
# cameras at 90 deg to each other
t01 = np.array(( 100.0, 0, 100.0 ))
R01 = mrcal.R_from_r(np.array((0.001, -np.pi/2.+0.002, -0.003)))
Rt01 = nps.glue(R01, t01, axis=-2)
p = np.array((( 30., 5., 40. ), # center-ish
( -2000., 25., 50. ), # way left in one cam, forward in the other
( 80., -10., 2000.), # forward one, right the other
( 75., 5., 4. ), # corner on both
))
test_geometry(Rt01, p, "cameras-90deg-to-each-other", check_gradients = False)
p = np.array((( 110., 25., 50. ),
( 90., -100., -5.),
))
test_geometry(Rt01, p, "cameras-90deg-to-each-other out-of-bounds", out_of_bounds = True )
testutils.finish()
|