File: usvdfit.pas

package info (click to toggle)
mricron 0.20140804.1~dfsg.1-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 13,480 kB
  • ctags: 8,011
  • sloc: pascal: 114,853; sh: 49; makefile: 32
file content (200 lines) | stat: -rwxr-xr-x 6,617 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
{ ******************************************************************
  Multiple linear regression (Singular Value Decomposition)
  ****************************************************************** }

unit usvdfit;

interface

uses
  utypes, usvd;

procedure SVDFit(X            : PMatrix;
                 Y            : PVector;
                 Lb, Ub, Nvar : Integer;
                 ConsTerm     : Boolean;
                 SVDTol       : Float;
                 B            : PVector;
                 V            : PMatrix);
{ ------------------------------------------------------------------
  Multiple linear regression: Y = B(0) + B(1) * X + B(2) * X2 + ...
  ------------------------------------------------------------------
  Input parameters:  X        = matrix of independent variables
                     Y        = vector of dependent variable
                     Lb, Ub   = array bounds
                     Nvar     = number of independent variables
                     ConsTerm = presence of constant term B(0)
  Output parameters: B        = regression parameters
                     V        = inverse matrix
  ------------------------------------------------------------------ }

procedure WSVDFit(X            : PMatrix;
                  Y, S         : PVector;
                  Lb, Ub, Nvar : Integer;
                  ConsTerm     : Boolean;
                  SVDTol       : Float;
                  B            : PVector;
                  V            : PMatrix);
{ ----------------------------------------------------------------------
  Weighted multiple linear regression
  ----------------------------------------------------------------------
  S = standard deviations of observations
  Other parameters as in SVDFit
  ---------------------------------------------------------------------- }

implementation

  type
    TRegMode = (UNWEIGHTED, WEIGHTED);

  procedure GenSVDFit(Mode         : TRegMode;
                      X            : PMatrix;
                      Y, S         : PVector;
                      Lb, Ub, Nvar : Integer;
                      ConsTerm     : Boolean;
                      SVDTol       : Float;
                      B            : PVector;
                      V            : PMatrix);
{ ----------------------------------------------------------------------
  General multiple linear regression routine (SVD algorithm)
  ---------------------------------------------------------------------- }
  var
    U       : PMatrix;  { Matrix of independent variables for SVD }
    Z       : PVector;  { Vector of dependent variables for SVD }
    S1      : PVector;  { Singular values }
    S2inv   : PVector;  { Inverses of squared singular values }
    V1      : PMatrix;  { Orthogonal matrix from SVD }
    LbU     : Integer;  { Lower bound of U matrix in both dim. }
    UbU     : Integer;  { Upper bound of U matrix in 1st dim. }
    I, J, K : Integer;  { Loop variables }
    Sigma   : Float;    { Square root of weight }
    Sum     : Float;    { Element of variance-covariance matrix }

  begin
    if Ub - Lb < Nvar then
      begin
        SetErrCode(MatErrDim);
        Exit;
      end;

    if Mode = WEIGHTED then
      for K := Lb to Ub do
        if S^[K] <= 0.0 then
          begin
            SetErrCode(MatSing);
            Exit;
          end;

  { ----------------------------------------------------------
    Prepare arrays for SVD :
    If constant term, use U[0..(N - Lb), 0..Nvar]
                      and Z[0..(N - Lb)]
    else              use U[1..(N - Lb + 1), 1..Nvar]
                      and Z[1..(N - Lb + 1)]
    since the lower bounds of U for the SVD routine must be
    the same in both dimensions
    ---------------------------------------------------------- }

    if ConsTerm then
      begin
        LbU := 0;
        UbU := Ub - Lb;
      end
    else
      begin
        LbU := 1;
        UbU := Ub - Lb + 1;
      end;

    { Dimension arrays }
    DimMatrix(U, UbU, Nvar);
    DimVector(Z, UbU);
    DimVector(S1, Nvar);
    DimVector(S2inv, Nvar);
    DimMatrix(V1, Nvar, Nvar);

    if Mode = UNWEIGHTED then
      for I := LbU to UbU do
        begin
          K := I - LbU + Lb;
          Z^[I] := Y^[K];
          if ConsTerm then
            U^[I]^[0] := 1.0;
          for J := 1 to Nvar do
            U^[I]^[J] := X^[K]^[J];
        end
    else
      for I := LbU to UbU do
        begin
          K := I - LbU + Lb;
          Sigma := 1.0 / S^[K];
          Z^[I] := Y^[K] * Sigma;
          if ConsTerm then
            U^[I]^[0] := Sigma;
          for J := 1 to Nvar do
            U^[I]^[J] := X^[K]^[J] * Sigma;
        end;

    { Perform singular value decomposition }
    SV_Decomp(U, LbU, UbU, Nvar, S1, V1);

    if MathErr = MatOk then
      begin
        { Set the lowest singular values to zero }
        SV_SetZero(S1, LbU, Nvar, SVDTol);

        { Solve the system }
        SV_Solve(U, S1, V1, Z, LbU, UbU, Nvar, B);

        { Compute variance-covariance matrix }
        for I := LbU to Nvar do
          if S1^[I] > 0.0 then
            S2inv^[I] := 1.0 / Sqr(S1^[I])
          else
            S2inv^[I] := 0.0;
        for I := LbU to Nvar do
          for J := LbU to I do
            begin
              Sum := 0.0;
              for K := LbU to Nvar do
                Sum := Sum + V1^[I]^[K] * V1^[J]^[K] * S2inv^[K];
              V^[I]^[J] := Sum;
              V^[J]^[I] := Sum;
            end;
      end;

    DelMatrix(U, UbU, Nvar);
    DelVector(Z, UbU);
    DelVector(S1, Nvar);
    DelVector(S2inv, Nvar);
    DelMatrix(V1, Nvar, Nvar);
  end;

procedure SVDFit(X            : PMatrix;
                 Y            : PVector;
                 Lb, Ub, Nvar : Integer;
                 ConsTerm     : Boolean;
                 SVDTol       : Float;
                 B            : PVector;
                 V            : PMatrix);

  var
    S : PVector;
  begin
    S := nil;
    GenSVDFit(UNWEIGHTED, X, Y, S, Lb, Ub, Nvar, ConsTerm, SVDTol, B, V);
  end;

procedure WSVDFit(X            : PMatrix;
                  Y, S         : PVector;
                  Lb, Ub, Nvar : Integer;
                  ConsTerm     : Boolean;
                  SVDTol       : Float;
                  B            : PVector;
                  V            : PMatrix);

  begin
    GenSVDFit(WEIGHTED, X, Y, S, Lb, Ub, Nvar, ConsTerm, SVDTol, B, V);
  end;

end.