TPMath

Math library for Pascal compilers

Jean Debord

December 15, 2007

Contents

1 Installation and compilation 9
1.1 Introduction 9
1.2 Unpacking the archive 9
1.3 Compilation under Windows 10
1.4 Compilation under Linux 10
1.5 Compilation of a program 11
1.6 Compilation with a 16 -bit compiler 11
2 Numeric precision 13
2.1 Numeric precision 13
2.2 Type Float 14
2.3 Type Complex 14
2.4 Size of types 14
2.5 Machine-dependent constants 14
2.6 Demo program 15
3 Elementary functions 17
3.1 Constants 17
3.2 Error handling 18
3.3 Min, max and exchange 18
3.4 Sign 19
3.5 Rounding functions 19
3.6 Logarithms and exponentials 19
3.7 Power functions 20
3.8 Trigonometric functions 20
3.9 Hyperbolic functions 21
3.10 Demo programs 21
3.10.1 Function accuracy 21
3.10.2 Computation speed 21
4 Special functions 23
4.1 Factorial 23
4.2 Gamma function 23
4.3 Polygamma functions 24
4.4 Beta function 25
4.5 Error function 25
4.6 Lambert's function 25
4.7 Demo programs 26
5 Probability distributions 27
5.1 Binomial distribution 27
5.2 Poisson distribution 28
5.3 Standard normal distribution 28
5.4 Student's distribution 29
5.5 Khi-2 distribution 30
5.6 Snedecor's distribution 30
5.7 Exponential distribution 31
5.8 Beta distribution 31
5.9 Gamma distribution 32
5.10 Demo program 32
6 Matrices and linear equations 33
6.1 Using vectors and matrices 33
6.2 Maximal array sizes 35
6.3 Array initialization 35
6.4 Programming conventions 35
6.5 Error codes 36
6.6 Gauss-Jordan elimination 36
6.7 LU decomposition 37
6.8 QR decomposition 38
6.9 Singular value decomposition 39
6.10 Eigenvalues and eigenvectors 40
6.10.1 Definitions 40
6.10.2 Symmetric matrices 40
6.10.3 General square matrices 41
6.11 Demo programs 42
6.11.1 Determinant and inverse of a square matrix 42
6.11.2 Hilbert matrices 43
6.11.3 Gauss-Jordan method: single constant vector 43
6.11.4 Gauss-Jordan method: multiple constant vectors 44
6.11.5 LU, QR and SV decompositions 44
6.11.6 Cholesky decomposition 44
6.11.7 Eigenvalues of a symmetric matrix 45
6.11.8 Eigenvalues of a general square matrix 45
6.11.9 Eigenvalues and eigenvectors of a general square matrix 45
7 Function minimization 49
7.1 Functions of one variable 49
7.2 Functions of several variables 50
7.2.1 Minimization along a line 51
7.2.2 Newton-Raphson method 51
7.2.3 Marquardt method 53
7.2.4 BFGS method 54
7.2.5 Simplex method 55
7.2.6 Log files 55
7.3 Demo programs 55
7.3.1 Function of one variable 55
7.3.2 Minimization along a line 56
7.3.3 Newton-Raphson method 56
7.3.4 Other programs 57
8 Nonlinear equations 59
8.1 Equations in one variable 59
8.1.1 Bisection method 59
8.1.2 Secant method 60
8.1.3 Newton-Raphson method 60
8.2 Equations in several variables 61
8.2.1 Newton-Raphson method 61
8.2.2 Broyden's method 63
8.3 Demo programs 63
8.3.1 Equations in one variable 63
8.3.2 Equations in several variables 64
9 Polynomials 65
9.1 Polynomials 65
9.2 Rational fractions 65
9.3 Roots of polynomials 65
9.3.1 Analytical methods 65
9.3.2 Iterative method 66
9.4 Ancillary functions 66
9.5 Demo programs 67
9.5.1 Evaluation of a polynomial 67
9.5.2 Evaluation of a rational fraction 67
9.5.3 Roots of a polynomial 67
10 Numerical integration and differential equations 69
10.1 Integration 69
10.1.1 Trapezoidal rule 69
10.1.2 Gauss-Legendre integration 69
10.2 Convolution 70
10.3 Differential equations 70
10.4 Demo programs 73
11 Fast Fourier Transform 77
11.1 Introduction 77
11.2 Programming 78
11.2.1 Array dimensioning 78
11.2.2 FFT procedures 78
11.3 Demo program 79
12 Random numbers 81
12.1 Random numbers 81
12.1.1 Introduction 81
12.1.2 Generic functions 82
12.1.3 Specific functions 83
12.1.4 Gaussian random numbers 83
12.2 Markov Chain Monte Carlo 84
12.3 Simulated Annealing 88
12.4 Genetic Algorithm 90
12.5 Demo programs 92
12.5.1 Test of MWC generator 92
12.5.2 Test of MT generator 92
12.5.3 Test of UVAG generator 92
12.5.4 File of random numbers 92
12.5.5 Gaussian random numbers 92
12.5.6 Multinormal distribution 93
12.5.7 Multi-lognormal distribution 93
12.5.8 Markov Chain Monte-Carlo 93
12.5.9 Simulated Annealing 94
12.5.10 Genetic Algorithm 94
13 Statistics 95
13.1 Descriptive statistics 95
13.2 Comparison of means 97
13.2.1 Student's test for independent samples 97
13.2.2 Student's test for paired samples 98
13.2.3 One-way analysis of variance (ANOVA) 98
13.2.4 Two-way analysis of variance 100
13.3 Comparison of variances 101
13.3.1 Comparison of two variances 101
13.3.2 Comparison of several variances 102
13.4 Non-parametric tests 103
13.4.1 Mann-Whitney test 103
13.4.2 Wilcoxon test 104
13.4.3 Kruskal-Wallis test 104
13.5 Statistical distribution 105
13.6 Comparison of distributions 106
13.6.1 Observed and theoretical distributions 106
13.6.2 Several observed distributions 107
13.7 Demo programs 107
13.7.1 Descriptive statistics, comparison of means and variances 1 108
13.7.2 Student's test for paired samples 108
13.7.3 One-way analysis of variance 108
13.7.4 Two-way analysis of variance 108
13.7.5 Statistical distribution 108
13.7.6 Comparison of distributions 109
14 Linear regression 111
14.1 Straight line fit 111
14.2 Analysis of variance 113
14.3 Precision of parameters 114
14.4 Probabilistic interpretation 114
14.5 Weighted regression 115
14.6 Programming 116
14.6.1 Regression procedures 116
14.6.2 Quality of fit 117
14.7 Demo programs 117
14.7.1 Unweighted linear regression 118
14.7.2 Weighted linear regression 118
15 Multilinear regression and principal component analysis 119
15.1 Multilinear regression 119
15.1.1 Normal equations 119
15.1.2 Analysis of variance 120
15.1.3 Precision of parameters 121
15.1.4 Probabilistic interpretation 121
15.1.5 Weighted regression 121
15.1.6 Programming 122
15.2 Principal component analysis 123
15.2.1 Theory 123
15.2.2 Programming 123
15.3 Demo programs 124
15.3.1 Multilinear regression 125
15.3.2 Polynomial regression 126
15.3.3 Principal component analysis 126
16 Nonlinear regression 129
16.1 Theory 129
16.2 Monte-Carlo simulation 131
16.3 Regression procedures 132
16.3.1 Optimization methods 132
16.3.2 Maximal number of parameters 132
16.3.3 Parameter bounds 132
16.3.4 Nonlinear regression 133
16.3.5 Monte-Carlo simulation 134
16.4 Demo programs 134
16.4.1 Nonlinear regression 134
16.4.2 Monte-Carlo simulation 136
17 String functions 137
17.1 Trim functions 137
17.2 Fill functions 137
17.3 Character replacement 138
17.4 Parsing 138
17.5 Formatting functions 138

Chapter 1

Installation and compilation

1.1 Introduction

Welcome to TPMath, a mathematical package for Pascal compilers. At this time, TPMath is comprised of two libraries:

- tpmath for the general math routines
- tpgraph for graphics

This library is primarily intended to be used with Delphi or FreePascal (FPC), but it may also be used, with some restrictions, with other compilers such as Turbo Pascal or GNU Pascal (GPC). It is also suitable for multilanguage programming, since most of its routines can be called from another language.

With a multi-platform compiler such as FPC or GPC the library has access to a wide range of operating systems. However, the Windows platform will be considered primarily here.

This chapter explains how to install TPMath and how to compile a program which uses it.

1.2 Unpacking the archive

Extract the archive tpmat [...].zip (where [...] stands for version number) in a given directory.

Be sure to preserve the directory structure. For instance, if you use pkunzip, add the option -d (i. e. pkunzip -d tpmat[...].zip).

1.3 Compilation under Windows

The most simple way to use TPMath is to compile it as shared libraries (DLL). This can be done with Delphi or FPC. For this purpose, two compiling scripts are given in the dll subdirectory:

- dcompil.bat for Delphi
- fpcompil.bat for FPC

Run the appropriate script from the command line in the dll subdirectory. The following files will be created:

- the library files (tpmath.dll, tpgraph.dll)
- the interface files (tpmath.dcu, tpgraph.dcu with Delphi, tpmath.ppu, tpgraph.ppu with FPC)
- with FPC, the object files (tpmath.o, tpgraph.o).

Copy the library files to the appropriate directory, e. g. \Windows\System.
Copy the interface files and the object files to the directory where the compiler stores its units (or to any directory which is in the unit search path)

1.4 Compilation under Linux

A shell script fpcompil.sh allows to compile the library with FPC under Linux. This script will create the shared library files libtpmath.so, libtpgraph.so, the interface files tpmath.ppu, tpgraph.ppu and the object files tpmath.o, tpgraph.o.

Copy the library files to an appropriate directory, e. g. /usr/lib.
Copy the interface files and the object files to the directory where the compiler stores its units.

Note : the tpgraph library will work under Linux only if SVGAlib is installed and functional.

1.5 Compilation of a program

In order to use the library in a program, add the line:

```
uses tpmath;
```

at the beginning of the program.
If you wish to use graphics, add:

```
uses tpmath, tpgraph;
```

Note: with FPC, the library is compiled in the Delphi mode (option -Mdelphi) to ensure that the Integer type is 32 -bit. The programs should be compiled with the same option (modify the FPC configuration file if necessary).

1.6 Compilation with a 16 -bit compiler

In order to use the library with a 16 -bit compiler such as Turbo Pascal or Delphi 1.0:

1. Make sure that the options 'Force far calls' and ' 8087 ' (or Emulation) are activated. On the command line:

$$
-\$ \mathrm{~F}+-\$ \mathrm{~N}+
$$

2. Define the symbol _16BIT in the 'Conditional defines'. On the command line:
-D_16BIT
3. In the demo programs, replace all references to unit tpmath by references to the individual units. Unit utypes should always be present, together with the units containing the routines called by the program (see file filelist.txt in the units subdirectory for a list of available units and procedures).

Chapter 2

Numeric precision

This chapter explains how to set the mathematical precision for the computations involving real numbers.

2.1 Numeric precision

TPMath allows you to use three floating point types Single (4-byte real, about 6 significant digits), Double (8-byte real, about 15 significant digits), or Extended (10-byte real, about 18 significant digits).

The choice of a given type is done by defining a compilation symbol: SINGLEREAL, DOUBLEREAL or EXTENDEDREAL.

The symbol may be defined on the command line, using the -d option (e. g. dcc32 prog.pas -dEXTENDEDREAL ...) or in the IDE.

If no symbol is defined, then type Double will be automatically selected. It is therefore the default type.

If another type is desired, it will be necessary to recompile the library.

Also, if you wish to compare the results given by a TPMath program with those of a reference program written in another language (e. g. Fortran), be sure that the two programs have been compiled with the same numeric precision.

2.2 Type Float

TPmath defines a type Float for real numbers. It corresponds to Single, Double or Extended, according to the compilation options.

So, a program which uses real variables should begin with something like:

```
uses
    tpmath;
var
    X : Float;
```


2.3 Type Complex

For complex numbers, a Complex type is defined as follows:

```
type Complex = record
    X, Y : Float;
end;
```


2.4 Size of types

The sizes (in bytes) of the different types are given by the following constants:

```
FltSize for Float
CompSize for Complex
IntSize for Integer
BoolSize for Boolean
StrSize for String
PtrSize for Pointer
```


2.5 Machine-dependent constants

TPMath defines the following constants:

Constant	Meaning
MachEp	The smallest real number such that (1.0 + MachEp) has a different representation (in the computer memory) than 1.0; it may be viewed as a measure of the numeric precision which can be reached within the given floating point type.
MaxNum	The highest real number which can be represented.
MinNum	The lowest positive real number which can be represented.
MaxLog	The highest real number X for which Exp (X) can be computed without overflow.
MinLog	The lowest (negative) real number X for which Exp(X) can be computed without underflow.
MaxFac	The highest integer for which the factorial can be computed.

2.6 Demo program

The program testmach.pas located in the demo\fmath subdirectory checks that the machine-dependent constants are correctly handled by the computer.

This program lists the sizes of the integer and floating point types, together with the values of the machine-dependent constants, and computes the following quantities:

Exp (MinLog)	Should be approximately equal to MinNum
Ln(MinNum)	Should be approximately equal to MinLog
Exp (MaxLog)	Should be approximately equal to MaxNum
Ln(MaxNum)	Should be approximately equal to MaxLog
Fact(MaxFac) Gamma (MaxGam) LnGamma(MaxLgm)	Should be computed without overflow.

The following results were obtained with FPC in double precision:

```
Integer type = Integer (4 bytes)
Long Integer type = LongInt (4 bytes)
Floating point type = Double (8 bytes)
Complex type = Complex (16 bytes)
```

MachEp	$=2.2204460492503130 \mathrm{E}-0016$
MinNum	$=2.2250738585072020 \mathrm{E}-0308$
Exp(MinLog)	$=2.2250738585072152 \mathrm{E}-0308$
MinLog	$=-7.0839641853226410 \mathrm{E}+0002$
Ln(MinNum)	$=-7.0839641853226411 \mathrm{E}+0002$
MaxNum	$=1.7976931348623150 \mathrm{E}+0308$
Exp(MaxLog)	$=1.7976931348623216 \mathrm{E}+0308$
MaxLog	$=7.0978271289338400 \mathrm{E}+0002$
Ln(MaxNum)	$=7.0978271289338400 \mathrm{E}+0002$
MaxFac	$=170$
Fact(MaxFac)	$=7.257415615307999 \mathrm{E}+306$
MaxGam	$=1.7162437695630200 \mathrm{E}+0002$
Gamma(MaxGam)	$=1.797693134862315 \mathrm{E}+308$
MaxLgm	$=2.5563480000000000 \mathrm{E}+0305$
LnGamma(MaxLgm)	$=1.795136671459441 \mathrm{E}+308$

Chapter 3

Elementary functions

This chapter describes the mathematical constants and elementary mathematical functions available in TPMath.

3.1 Constants

The following mathematical constants are defined:

Constant	Value	Meaning
Pi	$3.14159 \ldots$	π
Ln2	$0.69314 \ldots$	$\ln 2$
Ln10	$2.30258 \ldots$	$\ln 10$
LnPi	$1.14472 \ldots$	$\ln \pi$
InvLn2	$1.44269 \ldots$	$1 / \ln 2$
InvLn10	$0.43429 \ldots$	$1 / \ln 10$
TwoPi	$6.28318 \ldots$	2π
PiDiv2	$1.57079 \ldots$	$\pi / 2$
SqrtPi	$1.77245 \ldots$	$\sqrt{\pi}$
Sqrt2Pi	$2.50662 \ldots$	$\sqrt{2 \pi}$
InvSqrt2Pi	$0.39894 \ldots$	$1 / \sqrt{2 \pi}$
LnSqrt2Pi	$0.91893 \ldots$	$\ln \sqrt{2 \pi}$
Ln2PiDiv2	$0.91893 \ldots$	$(\ln 2 \pi) / 2$
Sqrt2	$1.41421 \ldots$	$\sqrt{2}$
Sqrt2Div2	$0.70710 \ldots$	$\sqrt{2} / 2$
Gold	$1.61803 \ldots$	Golden Ratio $=(1+\sqrt{5}) / 2$
CGold	$0.38196 \ldots$	$2-\operatorname{Gold}$

Note : The constants are stored with 20 to 21 significant digits. So, they will match the highest degree of precision available (i.e. type Extended).

3.2 Error handling

The function MathErr () returns the error code from the last function evaluation. It must be checked immediately after a function call:
$\mathrm{Y}:=\mathrm{f}(\mathrm{X}) ; \quad\{\mathrm{f}$ is one of the functions of the library $\}$ if MathErr = FOk then ...

If an error occurs, a default value is attributed to the function. The possible error codes are the following:

Error code	Value	Meaning
FOk	0	No error
FDomain	-1	Argument domain error
FSing	-2	Function singularity
FOverflow	-3	Overflow range error
FUnderflow	-4	Underflow range error
FTLoss	-5	Total loss of precision
FPLoss	-6	Partial loss of precision

3.3 Min, max and exchange

- Function $\operatorname{FMin}(\mathrm{X}, \mathrm{Y})$ returns the minimum of two real numbers X, Y.
- Function $\operatorname{IMin}(X, Y)$ returns the minimum of two integer numbers X, Y.
- Function $\operatorname{FMax}(\mathrm{X}, \mathrm{Y})$ returns the maximum of two real numbers X, Y.
- Function $\operatorname{IMax}(\mathrm{X}, \mathrm{Y})$ returns the maximum of two integer numbers X, Y.
- Function FSwap (X, Y) exchanges two real numbers X, Y.
- Function $\operatorname{ISwap}(\mathrm{X}, \mathrm{Y})$ exchanges two integer numbers X, Y.

3.4 Sign

- Function $\operatorname{Sgn}(\mathrm{X})$ returns 1 if $X \geq 0,-1$ if $X<0$.
- Function $\operatorname{Sgn} 0(\mathrm{X})$ returns 1 if $X>0,0$ if $X=0,-1$ if $X<0$.
- Function $\operatorname{DSgn}(\mathrm{A}, \mathrm{B})$ transfers the sign of B to A. It is therefore equivalent to: $\operatorname{Sgn}(B) * \operatorname{Abs}(A)$

3.5 Rounding functions

- Function RoundN(X,N) will round X to N decimal places. N must be between 0 and 16.
- Function Floor (X) returns the lowest integer $\geq X$
- Function Ceil(X) returns the highest integer $\leq X$

3.6 Logarithms and exponentials

The functions Expo and Log may be used instead of the standard functions Exp and Ln, when it is necessary to check the range of the argument. The new function performs the required tests and calls the standard function if the argument is within the acceptable limits (for instance, $\mathrm{X}>0$ for $\operatorname{Ln}(\mathrm{X})$); otherwise, the function returns a default value and MathErr () will return the appropriate error code.

Calling these functions is more time-consuming than calling the standard Exp and Ln, because each function involves several tests and two procedure calls (one to the function itself and another to the standard Exp or Ln). Hence, if the program must compute lots of logarithms or exponentials, it may be more efficient to use the standard functions Exp and Ln. In this case, however, the error handling must be done by the main program.

The same remark applies to the other logarithmic and exponential functions defined in the library:

Function	Definition	Pascal code
$\operatorname{Exp2}(\mathrm{X})$	2^{X}	$\operatorname{Exp}(\mathrm{X} * \operatorname{Ln} 2)$
$\operatorname{Exp} 10(\mathrm{X})$	10^{X}	$\operatorname{Exp}(\mathrm{X} * \operatorname{Ln} 10)$
$\log 2(\mathrm{X})$	$\log _{2} X$	$\operatorname{Ln}(\mathrm{X}) * \operatorname{InvLn2}$
$\log 10(\mathrm{X})$	$\log _{10} X$	$\operatorname{Ln}(\mathrm{X}) * \operatorname{InvLn} 10$
$\log A(X, A)$	$\log _{A} X$	$\operatorname{Ln}(\mathrm{X}) / \operatorname{Ln}(\mathrm{A})$

Here, too, it may be more efficient to use the Pascal code inline rather than calling the TPMath function, but the error control will be lost.

3.7 Power functions

- Function Power (X, Y) returns X^{Y}. Y may be integer or real, but if Y is real then X cannot be negative.
- Function IntPower (X, N) returns X^{N} where N is integer.

Note: To ensure the continuity of the function X^{X} when $X \rightarrow 0$, the value 0^{0} has been set to 1 .

3.8 Trigonometric functions

In addition to the standard Pascal functions Sin, Cos and ArcTan, TPMath provides the following functions:

Function	Definition
$\operatorname{Tan}(\mathrm{X})$	$\frac{\sin X}{\cos X} \quad X \neq(2 k+1) \frac{\pi}{2}$
$\operatorname{ArcSin}(\mathrm{X})$	$\arctan \frac{X}{\sqrt{1-X^{2}}} \quad(-1<X<1)$
$\operatorname{ArcCos}(\mathrm{X})$	$\frac{\pi}{2}-\arcsin X \quad(-1<X<1)$
$\operatorname{Pythag}(\mathrm{X}, \mathrm{Y})$	$\sqrt{X^{2}+Y^{2}}$
$\operatorname{ArcTan2}(\mathrm{Y}, \mathrm{X})$	$\arctan \frac{Y}{X}$, result in $[-\pi, \pi]$
FixAngle(Theta)	Returns the angle Theta in the range $[-\pi, \pi]$

Note: If (X, Y) are the cartesian coordinates of a point in the plane, its polar coordinates are:

```
R := Pythag(X, Y);
Theta := ArcTan2(Y, X)
```


3.9 Hyperbolic functions

The following functions are available:

Function	Definition	
$\operatorname{Sinh}(X)$	$\frac{1}{2}\left(e^{X}-e^{-X}\right)$	
$\operatorname{Cosh}(X)$	$\frac{1}{2}\left(e^{X}+e^{-X}\right)$	
$\operatorname{Tanh}(X)$	$\frac{\sinh X}{\cosh X}$	
$\operatorname{ArcSinh}(X)$	$\ln \left(X+\sqrt{X^{2}+1}\right)$	
$\operatorname{ArcCosh}(X)$	$\ln \left(X+\sqrt{X^{2}-1}\right)$	$X>1$
$\operatorname{ArcTanh}(X)$	$\frac{1}{2} \ln \frac{X+1}{X-1}$	$-1<X<1$

In addition, the subroutine $\operatorname{Sinh} \operatorname{Cosh}(X, \operatorname{Sinh} X, \operatorname{CoshX})$ computes the hyperbolic sine and cosine simultaneously, saving the computation of one exponential.

3.10 Demo programs

These program are located in the demo \fmath subdirectory.

3.10.1 Function accuracy

Program testfunc.pas checks the accuracy of the elementary functions. For each function, 20 random arguments are picked, then the function is computed, the reciprocal function is applied to the result, and the relative error between this last result and the original argument is computed. This error should be around 10^{-15} in double precision.

3.10.2 Computation speed

Program speed.pas measures the execution time of the built-in mathematical functions, as well as the additional functions provided in TPMath. The results are printed on the screen and saved in a text file named speed.out.

Chapter 4

Special functions

This chapter describes the special functions available in TPMath. Most of them have been adapted from C codes in the Cephes library by S. Moshier (http://www.moshier.net).

4.1 Factorial

Function Fact(N) returns the factorial of the non-negative integer N, also noted N !:

$$
N!=1 \times 2 \times \cdots \times N \quad 0!=1
$$

The constant MaxFac defines the highest integer for which the factorial can be computed (See chapter 2, p. 14).

4.2 Gamma function

- Function Gamma (X) returns the Gamma function, defined by:

$$
\Gamma(X)=\int_{0}^{\infty} t^{X-1} e^{-t} d t
$$

This function is related to the factorial by:

$$
N!=\Gamma(N+1)
$$

The Gamma function is indefinite for $X=0$ and for negative integer values of X. It is positive for $X>0$. For $X<0$ the Gamma function changes its sign whenever X crosses an integer value. More precisely, if X is an even negative integer, $\Gamma(X)$ is positive on the interval $] X, X+1[$, otherwise it is negative.

- Function SgnGamma(X) returns the sign of the Gamma function for a given value of X.
- Function LnGamma(X) returns the natural logarithm of the Gamma function.
- Function Stirling (X) approximates Gamma(X) with Stirling's formula, for $X \geq 30$.
- Function StirLog(X) approximates LnGamma(X) with Stirling's formula, for $X \geq 13$.

The constants MaxGam and MaxLgm define the highest values for which the Gamma function and its logarithm, respectively, can be computed (See chapter 2, p. 14).

- Function IGamma(A, X) returns the incomplete Gamma function, defined by:

$$
\frac{1}{\Gamma(A)} \int_{0}^{X} t^{A-1} e^{-t} d t \quad A>0, X>0
$$

- Function JGamma (A, X) returns the complement of the incomplete Gamma function, defined by:

$$
\frac{1}{\Gamma(A)} \int_{X}^{\infty} t^{A-1} e^{-t} d t
$$

Although formally equivalent to 1.0 - IGamma(A, X), this function uses specific algorithms to minimize roundoff errors.

- Function InvGamma (A, Y) returns X such that IGamma (A, X) $=\mathrm{Y}$

4.3 Polygamma functions

The polygamma function of order n, denoted $\psi_{n}(x)$, is the n-th derivative of the logarithm of the gamma function:

$$
\psi_{n}(x)=\frac{d^{n}}{d x^{n}} \ln \Gamma(x)
$$

The cases $n=1$ and $n=2$ are implemented in TPMath as DiGamma(X) and TriGamma (X)

4.4 Beta function

- Function $\operatorname{Beta}(X, Y)$ returns the Beta function, defined by:

$$
\mathcal{B}(X, Y)=\int_{0}^{1} t^{X-1}(1-t)^{Y-1} d t=\frac{\Gamma(X) \Gamma(Y)}{\Gamma(X+Y)}
$$

(Here \mathcal{B} denotes the uppercase greek letter 'Beta' !)

- Function $\operatorname{IBeta}(\mathrm{A}, \mathrm{B}, \mathrm{X})$ returns the incomplete Beta function, defined by:

$$
\frac{1}{\mathcal{B}(A, B)} \int_{0}^{X} t^{A-1}(1-t)^{B-1} d t \quad A>0, B>0,0 \leq X \leq 1
$$

- Function $\operatorname{InvBeta}(A, B, Y)$ returns X such that $\operatorname{IBeta}(A, B, X)=Y$

4.5 Error function

- Function $\operatorname{Erf}(X)$ returns the error function, defined by:

$$
\operatorname{erf}(X)=\frac{2}{\sqrt{\pi}} \int_{0}^{X} \exp \left(-t^{2}\right) d t
$$

- Function $\operatorname{Erfc}(\mathrm{X})$ returns the complement of the error function, defined by:

$$
\operatorname{erfc}(X)=\frac{2}{\sqrt{\pi}} \int_{X}^{\infty} \exp \left(-t^{2}\right) d t
$$

4.6 Lambert's function

Lambert's W function is the reciprocal of the function $x e^{x}$. That is, if $y=$ $W(x)$, then $x=y e^{y}$. Lambert's function is defined for $x \geq-1 / e$, with $W(-1 / e)=-1$. When $-1 / e<x<0$, the function has two values; the value $W(x)>-1$ defines the upper branch, the value $W(x)<-1$ defines the lower branch.

The function LambertW (X, UBranch, Offset) computes Lambert's function.

- X is the argument of the function (must be $\geq-1 / e$)
- UBranch is a boolean parameter which must be set to True for computing the upper branch of the function and to False for computing the lower branch.
- Offset is a boolean parameter indicating if X is an offset from $-1 / e$. In this case, $W(X-1 / e)$ will be computed (with $X>0)$. Using offsets improves the accuracy of the computation if the argument is near $-1 / e$.

The code for Lambert's function has been translated from a Fortran program written by Barry et al (http://www.netlib.org/toms/743).

4.7 Demo programs

- Program specfunc.pas, located in the demo\fmath subdirectory, checks the accuracy of the functions Fact, Binomial, Gamma, IGamma, Erf, Erfc, Beta, IBeta, DiGamma and TriGamma

Most of the data come from Numerical Recipes (http://www.nr.com), but the reference values have been re-computed to 20 significant digits with the Maple software (http://www.maplesoft.com) and the Gamma values for negative arguments have been corrected.

Each program computes the values of a given function for a set of predefined arguments and compares the results to the reference values. Then it displays the number of correct digits found. This number should be between 14 and 16 in double precision.

- Program testw. pas checks the accuracy of the Lambert function.

The program computes Lambert's function for a set of pre-defined arguments and compares the results with reference values. It displays the number of exact digits found. This number should correspond with the numeric precision used (14-16 digits in double precision).

This program has been translated from a Fortran program written by Barry et al (http://www.netlib.org/toms/743).

Chapter 5

Probability distributions

This chapter describes the functions available in TPMath to compute probability distributions. Most of them are applications of the special functions studied in chapter 4.

5.1 Binomial distribution

Binomial distribution arises when a trial has two possible outcomes: 'failure' or 'success'. If the trial is repeated N times, the random variable X is the number of successes.

- Function Binomial (N, K) returns the binomial coefficient $\binom{N}{K}$, which is defined by:

$$
\binom{N}{K}=\frac{N!}{K!(N-K)!} \quad 0 \leq K \leq N
$$

- Function PBinom (N, P, K) returns the probability of obtaining K successes among N repetitions, if the probability of success is P.

$$
\operatorname{Prob}(X=K)=\binom{N}{K} P^{K} Q^{N-K} \quad \text { with } Q=1-P
$$

- Function FBinom(N, P, K) returns the probability of obtaining at most K successes among N repetitions, i. e. $\operatorname{Prob}(X \leq K)$. This is called the cumulative probability function and is defined by:

$$
\operatorname{Prob}(X \leq K)=\sum_{k=0}^{K}\binom{N}{k} P^{k} Q^{N-k}=1-I_{\mathcal{B}}(K+1, N-K, P)
$$

where $I_{\mathcal{B}}$ denotes the incomplete Beta function.

The mean of the binomial distribution is $\mu=N P$, its variance is $\sigma^{2}=$ $N P Q$. The standard deviation is therefore $\sigma=\sqrt{N P Q}$.

5.2 Poisson distribution

The Poisson distribution can be considered as the limit of the binomial distribution when $N \rightarrow \infty$ and $P \rightarrow 0$ while the mean $\mu=N P$ remains small (say $N \geq 30, P \leq 0.1, N P \leq 10$)

- Function PPoisson(Mu, K) returns the probability of observing the value K if the mean is μ. It is defined by:

$$
\operatorname{Prob}(X=K)=e^{-\mu} \frac{\mu^{K}}{K!}
$$

- Function FPoisson(Mu, K) gives the cumulative probability function, defined by:

$$
\operatorname{Prob}(X \leq K)=\sum_{k=0}^{K} e^{-\mu} \frac{\mu^{k}}{k!}=1-I_{\Gamma}(K+1, \mu)
$$

where I_{Γ} denotes the incomplete Gamma function.

5.3 Standard normal distribution

The normal distribution (a. k. a. Gauss distribution or Laplace-Gauss distribution) corresponds to the classical bell-shaped curve. It may also be considered as a limit of the binomial distribution when N is sufficiently 'large' while P and Q are sufficiently different from 0 or 1 . (say $N \geq 30, N P \geq 5$, $N Q \geq 5)$.

The normal distribution with mean μ and standard deviation σ is denoted $\mathcal{N}(\mu, \sigma)$ with $\mu=N P$ and $\sigma=\sqrt{N P Q}$. The special case $\mathcal{N}(0,1)$ is called the standard normal distribution.

- Function DNorm (X) returns the probability density of the standard normal distribution, defined by:

$$
f(X)=\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{X^{2}}{2}\right)
$$

The graph of this function is the bell-shaped curve.

- Function FNorm(X) returns the cumulative probability function:

$$
\Phi(X)=\operatorname{Prob}(U \leq X)=\int_{-\infty}^{X} f(x) d x=\frac{1}{2}\left[1+\operatorname{erf}\left(X \frac{\sqrt{2}}{2}\right)\right]
$$

where U denotes the standard normal variable and erf the error function.

- Function PNorm(X) returns the probability that the standard normal variable exceeds X in absolute value, i. e. $\operatorname{Prob}(|U|>X)$.
- Function InvNorm (P) returns the value X such that $\Phi(X)=P$.

5.4 Student's distribution

Student's distribution is widely used in Statistics, for instance to estimate the mean of a population from a sample taken from this population. The distribution depends on an integer parameter ν called the number of degrees of freedom (in the mean estimation problem, $\nu=n-1$ where n is the number of individuals in the sample). When ν is large (say >30) the Student distribution is approximately equal to the standard normal distribution.

- Function DStudent (Nu, X) returns the probability density of the Student distribution with Nu degrees of freedom, defined by:

$$
f_{\nu}(X)=\frac{1}{\nu^{1 / 2} \mathcal{B}\left(\frac{\nu}{2}, \frac{1}{2}\right)} \cdot\left(1+\frac{X^{2}}{\nu}\right)^{-\frac{\nu+1}{2}}
$$

where \mathcal{B} denotes the Beta function.

- Function FStudent (Nu, X) returns the cumulative probability function:

$$
\Phi_{\nu}(X)=\operatorname{Prob}(t \leq X)=\int_{-\infty}^{X} f_{\nu}(x) d x= \begin{cases}I / 2 & \text { if } X \leq 0 \\ 1-I / 2 & \text { if } X>0\end{cases}
$$

where t denotes the Student variable and $I=I_{\mathcal{B}}\left(\frac{\nu}{2}, \frac{1}{2}, \frac{\nu}{\nu+X^{2}}\right)$

- Function PStudent (Nu, X) returns the probability that the Student variable t exceeds X in absolute value, i. e. $\operatorname{Prob}(|t|>X)$.
- Function $\operatorname{InvStudent}(\mathrm{Nu}, \mathrm{P})$ returns the value X such that $\Phi_{\nu}(X)=$ P.

5.5 Khi-2 distribution

The χ^{2} distribution is a special case of the Gamma distribution (see below). It depends on an integer parameter ν which is the number of degrees of freedom.

- Function $\operatorname{DKhi2(Nu}, \mathrm{X})$ returns the probability density of the χ^{2} distribution with Nu degrees of freedom, defined by:

$$
f_{\nu}(X)=\frac{1}{2^{\frac{\nu}{2}} \Gamma\left(\frac{\nu}{2}\right)} \cdot X^{\frac{\nu}{2}-1} \cdot \exp \left(-\frac{X}{2}\right) \quad(X>0)
$$

- Function $\operatorname{FKhi2}(\mathrm{Nu}, \mathrm{X})$ returns the cumulative probability function:

$$
\Phi_{\nu}(X)=\operatorname{Prob}\left(\chi^{2} \leq X\right)=\int_{0}^{X} f_{\nu}(x) d x=I_{\Gamma}\left(\frac{\nu}{2}, \frac{X}{2}\right)
$$

where I_{Γ} denotes the incomplete Gamma function.

- Function PKhi2(Nu, X) returns the probability that the χ^{2} variable exceeds X, i. e. $\operatorname{Prob}\left(\chi^{2}>X\right)$.
- Function InvKhi2(Nu, P) returns the value X such that $\Phi_{\nu}(X)=P$.

5.6 Snedecor's distribution

The Snedecor (or Fisher-Snedecor) distribution is used mainly to compare two variances. It depends on two integer parameters ν_{1} and ν_{2} which are the degrees of freedom associated with the variances.

- Function DSnedecor(Nu1, Nu2, X) returns the probability density of the Snedecor distribution with Nu1 and Nu2 degrees of freedom, defined by:
$f_{\nu_{1}, \nu_{2}}(X)=\frac{1}{\mathcal{B}\left(\frac{\nu_{1}}{2}, \frac{\nu_{2}}{2}\right)} \cdot\left(\frac{\nu_{1}}{\nu_{2}}\right)^{\frac{\nu_{1}}{2}} \cdot X^{\frac{\nu_{1}}{2}-1} \cdot\left(1+\frac{\nu_{1}}{\nu_{2}} X\right)^{-\frac{\nu_{1}+\nu_{2}}{2}} \quad(X>0)$
- Function FSnedecor (Nu1, Nu2, X) returns the cumulative probability function:

$$
\Phi_{\nu_{1}, \nu_{2}}(X)=\operatorname{Prob}(F \leq X)=\int_{0}^{X} f_{\nu_{1}, \nu_{2}}(x) d x=1-I_{\mathcal{B}}\left(\frac{\nu_{2}}{2}, \frac{\nu_{1}}{2}, \frac{\nu_{2}}{\nu_{2}+\nu_{1} X}\right)
$$

where F denotes the Snedecor variable.

- Function PSnedecor (Nu1, Nu2, X) returns the probability that the Snedecor variable F exceeds X, i. e. $\operatorname{Prob}(F>X)$.
- Function InvSnedecor (Nu1, Nu2, P) returns the value X such that $\Phi_{\nu_{1}, \nu_{2}}(X)=P$.

5.7 Exponential distribution

The exponential distribution is used in many applications (radioactivity, chemical kinetics...). It depends on a positive real parameter A.

- Function $\operatorname{DExpo}(\mathrm{A}, \mathrm{X})$ returns the probability density of the exponential distribution with parameter A, defined by:

$$
f_{A}(X)=A \exp (-A X) \quad(X>0)
$$

- Function $\operatorname{FExpo}(\mathrm{A}, \mathrm{X})$ returns the cumulative probability function:

$$
\Phi_{A}(X)=\int_{0}^{X} f_{A}(x) d x=1-\exp (-A X)
$$

5.8 Beta distribution

The Beta distribution is often used to describe the distribution of a random variable defined on the unit interval $[0,1]$. It depends on two positive real parameters A and B.

- Function $\operatorname{DBeta}(\mathrm{A}, \mathrm{B}, \mathrm{X})$ returns the probability density of the Beta distribution with parameters A and B, defined by:

$$
f_{A, B}(X)=\frac{1}{\mathcal{B}(A, B)} \cdot X^{A-1} \cdot(1-X)^{B-1} \quad(0 \leq X \leq 1)
$$

- Function $\operatorname{FBeta}(\mathrm{A}, \mathrm{B}, \mathrm{X})$ returns the cumulative probability function:

$$
\Phi_{A, B}(X)=\int_{0}^{X} f_{A, B}(x) d x=I_{B}(A, B, X)
$$

5.9 Gamma distribution

The Gamma distribution is often used to describe the distribution of a random variable defined on the positive real axis. It depends on two positive real parameters A and B.

- Function DGamma (A, B, X) returns the probability density of the Gamma distribution with parameters A and B, defined by:

$$
f_{A, B}(X)=\frac{B^{A}}{\Gamma(A)} \cdot X^{A-1} \cdot \exp (-B X) \quad(X>0)
$$

- Function FGamma(A, B, X) returns the cumulative probability function:

$$
\Phi_{A, B}(X)=\int_{0}^{X} f_{A, B}(x) d x=I_{\Gamma}(A, B X)
$$

The χ^{2} distribution is a special case of the Gamma distribution, with $A=\nu / 2$ and $B=1 / 2$.

5.10 Demo program

Program binom.pas, located in the demo\proba subdirectory, compares the cumulative probabilities of the binomial distribution, estimated by function FBinom, with the values obtained by summing up the individual probabilities.

Chapter 6

Matrices and linear equations

This chapter describes the procedures and functions available in TPMath to perform vector and matrix operations, and to solve systems of linear equations.

6.1 Using vectors and matrices

TPMath defines the following dynamic array types:

Vector type	Matrix type	Base variable
PVector	PMatrix	Floating point number (type Float)
PIntVector	PIntMatrix	Integer
PCompVector	PCompMatrix	Complex number (type Complex)
PBoolVector	PBoolMatrix	Boolean
PStrVector	PStrMatrix	String

To use these arrays in your programs, you must:

1. Declare variables of the appropriate type, then allocate each array before using it:
```
var
    V : PVector;
    A : PMatrix;
begin
    DimVector(V,N); { creates vector V[0..N] }
    DimMatrix(A, N, M); { creates matrix A[O..N, O..M] }
                                { N, M are integer variables }
    ...
end.
```

If the allocation does not succeed, the array is given the value nil. So, it is possible to test the result:

```
DimVector(V, 10000);
if V = nil then
    Write('Not enough memory!');
```

Note that this allocation step is mandatory, because these dynamic arrays are, in fact, pointers. Unlike standard Pascal arrays, it is not sufficient to declare the variables!
2. Use arrays as in standard Pascal, noting that:
(a) You must use the indirection operator (${ }^{\wedge}$) to reference any array element, i.e. write $\mathrm{V}^{\wedge}[\mathrm{I}]$ and $\mathrm{A}^{\wedge}[\mathrm{II}]^{\wedge}[\mathrm{J}]$ instead of $\mathrm{V}[\mathrm{I}]$ and A [I, J].
(b) You cannot use the assignment operator (: $=$) to copy the contents of an array into another array. Writing $B:=A$ simply makes B point to the same memory block than A.
(c) All arrays begin at index 0 , so that the 0 -indexed element is always present, even if you don't use it.
(d) A matrix is declared as an array of vectors, so that A^ [I] denotes the I-th vector of matrix A and may be used as any vector.
(e) Vector and matrix parameters must be passed to functions or procedures with the var attribute when these parameters are dimensioned inside the procedure. Otherwise, this attribute is not necessary.
3. To deallocate an array, use the Del... procedures:

```
DelVector(V, N);
DelMatrix(A, N, M);
```

See file tpmath.pas in the dll subdirectory for a list of available Dim. . . and Del... procedures.

6.2 Maximal array sizes

The maximal array size depends on the maximal size of a variable $\left(2^{16}=\right.$ 65536 (64 kilo) bytes for a 16 -bit compiler, $2^{31}=2147483648$ (2 giga) bytes for a 32-bit compiler), and on the size of the base type. For an array [0. . w] of type T , the maximal value of N is given by the formula:

```
N := Trunc(MaxSize / SizeOf(T)) - 2;
```

The sizes for the different base types are given by the following constants:

```
MAX_FLT for Float
MAX_COMP for Complex
MAX_INT for Integer
MAX_BOOL for Boolean
MAX_STR for String
```

For a matrix, the maximal size in the second dimension, i. e. the number of vectors in the matrix, is given by the constant MAX_VEC. This value can also be computed from the previous formula, by defining T as Pointer, since a matrix is in fact an array of pointers.

6.3 Array initialization

If the allocation succeeds, all array elements are initialized to zero (for numeric arrays), False (for boolean arrays), or the null string (for string arrays).

This initialization step may be too slow for large arrays. It can be skipped with the statement SetAutoInit(False) and reactivated with SetAutoInit(True).

6.4 Programming conventions

The following conventions have been adopted:

- Parameters Lb and Ub denote the lower and upper bounds of the indices, for a vector $\mathrm{V}[\mathrm{Lb} . \mathrm{Ub}]$ or a square matrix $\mathrm{A}[\mathrm{Lb} . \mathrm{Ub}, \mathrm{Lb} . \mathrm{Ub}]$.
- Parameters Lb1, Ub1 and Lb2, Ub2 denote the lower and upper bounds of the indices, for a rectangular matrix A[Lb1..Ub1, Lb2. .Ub2].
- With the exception of the memory allocation routines (DimVector, DimMatrix . . .), the procedures do not allocate the vectors or matrices present in their parameter lists. These allocations must therefore be performed by the main program, before calling the procedures.

6.5 Error codes

The following error codes are defined:

Error code	Value	Meaning
MatOk	0	No error
MatNonConv	-1	Non-convergence of an iterative procedure
MatSing	-2	Quasi-singular matrix
MatErrDim	-3	Non-compatible dimensions
MatNotPD	-4	Matrix not positive definite

6.6 Gauss-Jordan elimination

If $\mathbf{B}(n \times n)$ and $\mathbf{C}(n \times m)$ are two real matrices, the Gauss-Jordan elimination can compute the inverse matrix \mathbf{B}^{-1}, the solution \mathbf{X} to the system of linear equations $\mathbf{B X}=\mathbf{C}$, and the determinant of \mathbf{B}.

This procedure is implemented in TPMath as the following procedure:

```
GaussJordan(A, Lb, Ub1, Ub2, Det)
```

where:

- On input, A[Lb..Ub1, Lb. .Ub2] is the global matrix $[\mathbf{B} \mid \mathbf{C}]$, which means that:
- the first n columns of \mathbf{A} contain the matrix \mathbf{B}
- the other columns of \mathbf{A} contain the matrix \mathbf{C}
- On output, \mathbf{A} is transformed into the global matrix $\left[\mathbf{B}^{-1} \mid \mathbf{X}\right]$, which means that:
- the first n columns of \mathbf{A} contain the inverse matrix $\mathbf{B}^{-\mathbf{1}}$
- the other columns of \mathbf{A} contain the solution matrix \mathbf{X}
- Det is the determinant of \mathbf{B}

Notes:

- C may be a vector, in this case $m=1$ and \mathbf{X} is also a vector.
- The original matrix \mathbf{A} is overwritten by the procedure. If necessary, the calling program must save a copy of it.

After a call to GaussJordan, the function MathErr will return the error code:

- MatOk if no error
- MatErrDim if Ub1 > Ub2
- MatSing if B is quasi-singular

6.7 LU decomposition

The LU decomposition algorithm factors the square matrix \mathbf{A} as a product $\mathbf{L U}$, where \mathbf{L} is a lower triangular matrix (with unit diagonal terms) and \mathbf{U} is an upper triangular matrix.

The linear system $\mathbf{A X}=\mathbf{B}$ is then solved by:

$$
\begin{align*}
\mathbf{L Y} & =\mathbf{B} \tag{6.1}\\
\mathbf{U X} & =\mathbf{Y} \tag{6.2}
\end{align*}
$$

System 6.1 is solved for vector \mathbf{Y}, then system 6.2 is solved for vector \mathbf{X}. The solutions are simplified by the triangular nature of the matrices.

TPMath provides the following procedures:

- procedure LU_Decomp(A, Lb, Ub) performs the LU decomposition of matrix A[Lb. .Ub, Lb. .Ub].

The matrices \mathbf{L} and \mathbf{U} are stored in \mathbf{A}, which is therefore destroyed.
After a call to LU_Decomp, the function MathErr will return one of the following error codes:

- MatOk if no error
- MatSing if \mathbf{A} is quasi-singular
- procedure LU _Solve (A, $B, L b, U b, X)$ solves the system $\mathbf{A X}=\mathbf{B}$, where \mathbf{X} and \mathbf{B} are real vectors, once the matrix \mathbf{A} has been transformed by LU_Decomp.

6.8 QR decomposition

This method factors a matrix \mathbf{A} as a product of an orthogonal matrix \mathbf{Q} by an upper triangular matrix \mathbf{R} :

$$
\mathbf{A}=\mathbf{Q R}
$$

The linear system $\mathbf{A X}=\mathbf{B}$ then becomes:

$$
\mathrm{QRX}=\mathrm{B}
$$

Denoting the transpose of \mathbf{Q} by \mathbf{Q}^{\top} and left-multiplying by this transpose, one obtains:

$$
\mathbf{Q}^{\top} \mathbf{Q R X}=\mathbf{Q}^{\top} \mathbf{B}
$$

or:

$$
\mathbf{R X}=\mathbf{Q}^{\top} \mathbf{B}
$$

since the transpose of an orthogonal matrix is equal to its inverse.
The last system is solved by making advantage of the triangular nature of matrix \mathbf{R}.

Note : The QR decomposition may be applied to a rectangular matrix $n \times m$ (with $n>m$). In this case, \mathbf{Q} has dimensions $n \times m$ and \mathbf{R} has dimensions $m \times m$. For a linear system $\mathbf{A X}=\mathbf{B}$, the solution minimizes the norm of the vector $\mathbf{A X}-\mathbf{B}$. It is called the least squares solution.

TPMath provides the following procedures:

- procedure QR_Decomp (A, Lb, Ub1, Ub2, R) performs the QR decomposition on the input matrix $\mathrm{A}[\mathrm{Lb} . . \mathrm{Ub} 1, \mathrm{Lb} . . \mathrm{Ub} 2]$.

The matrix \mathbf{Q} is stored in \mathbf{A}, which is therefore destroyed.
After a call to QR_Decomp, the function MathErr will return one of the following error codes:

- MatOk if no error
- MatErrDim if Ub2 > Ub1
- MatSing if A is quasi-singular
- procedure QR_Solve(Q, R, B, Lb, Ub1, Ub2, X) solves the system $\mathrm{QRX}=\mathrm{B}$.

6.9 Singular value decomposition

Singular value decomposition (SVD) factors a matrix A as a product:

$$
\mathbf{A}=\mathbf{U S V}^{\top}
$$

where \mathbf{U} et \mathbf{V} are orthogonal matrices. \mathbf{S} is a diagonal matrix. Its diagonal terms $S_{i i}$ are all ≥ 0 and are called the singular values of \mathbf{A}. The rank of \mathbf{A} is equal to the number of non-null singular values.

- If \mathbf{A} is a regular matrix, all $S_{i i}$ are >0. The inverse matrix is given by:

$$
\mathbf{A}^{-1}=\left(\mathbf{U S V} V^{\top}\right)^{-1}=\left(\mathbf{V}^{\top}\right)^{-1} \mathbf{S}^{-1} \mathbf{U}^{-1}=\mathbf{V} \times \operatorname{diag}\left(1 / S_{i i}\right) \times \mathbf{U}^{\top}
$$

since the inverse of an orthogonal matrix is equal to its transpose.
So the solution of the system $\mathbf{A X}=\mathbf{B}$ is given by $\mathbf{X}=\mathbf{A}^{-1} \mathbf{B}$

- If \mathbf{A} is a singular matrix, some $S_{i i}$ are null. However, the previous expressions remain valid provided that, for each null singular value, the term $1 / S_{i i}$ is replaced by zero.

It may be shown that the solution so calculated corresponds:

- in the case of an under-determined system, to the vector \mathbf{X} having the least norm.
- in the case of an impossible system, to the least-squares solution.

Note : Just like the QR decomposition, the SVD may be applied to a rectangular matrix $n \times m$ (with $n>m$). In this case, \mathbf{U} has dimensions $n \times m, \mathbf{S}$ and \mathbf{V} have dimensions $m \times m$. For a linear system $\mathbf{A X}=\mathbf{B}$, the SVD method gives the least squares solution.

TPMath provides the following procedures:

- procedure SV_Decomp(A, Lb, Ub1, Ub2, S, V) performs the singular value decomposition on the input matrix A[Lb. .Ub1, Lb. .Ub2].

The matrix \mathbf{U} (such that $\mathbf{A}=\mathbf{U S V}^{\top}$) is stored in \mathbf{A}, which is therefore destroyed.

After a call to SV_Decomp, the function MathErr will return one of the following error codes:

- MatOk if no error
- MatErrDim if Ub2 > Ub1
- MatNonConv if the iterative process does not converge
- procedure SV_SetZero (S, Lb, Ub, Tol) sets to zero the singular values S_{i} which are lower than a fraction Tol of the highest singular value. This procedure may be used when solving a system with a near-singular matrix.
- procedure SV_Solve(U, S, V, B, Lb, Ub1, Ub2, X) solves the system $\mathbf{U S V}^{\top} \mathbf{X}=\mathbf{B}$.
- procedure SV_Approx (U, S, V, Lb, Ub1, Ub2, A) approximates a matrix \mathbf{A} by the product $\mathbf{U S V}^{\top}$, after the lowest singular values have been set to zero by SV_SetZero.

6.10 Eigenvalues and eigenvectors

6.10.1 Definitions

A square matrix \mathbf{A} is said to have an eigenvalue λ, associated to an eigenvector \mathbf{V}, if and only if:

$$
\mathbf{A} \cdot \mathbf{V}=\lambda \cdot \mathbf{V}
$$

A symmetric matrix of size n has n distinct real eigenvalues and n orthogonal eigenvectors.

A non-symmetric matrix of size n has also n eigenvalues but some of them may be complex, and some may be equal (they are said to be degenerate).

6.10.2 Symmetric matrices

Procedure Jacobi(A, Lb, Ub, MaxIter, Tol, V, Lambda) computes the eigenvalues and eigenvectors of the real symmetric matrix A [Lb. .Ub, Lb. .Ub], using the iterative method of Jacobi.

MaxIter is the maximum number of iterations, Tol is the required precision on the eigenvalues.

The eigenvectors are returned in matrix \mathbf{V}; the eigenvalues are returned in vector Lambda.

The eigenvectors are stored along the columns of \mathbf{V}. They are normalized, with their first component always positive.

After a call to Jacobi, function MathErr returns one of two error codes:

- MatOk if all goes well.
- MatNonConv if the iterative process does not converge.

This procedure destroys the original matrix \mathbf{A}.

6.10.3 General square matrices

- procedure EigenVals(A, Lb, Ub, Lambda) computes the eigenvalues of the real square matrix $\mathrm{A}[\mathrm{Lb} . . \mathrm{Ub}, \mathrm{Lb} . . \mathrm{Ub}]$.

Eigenvalues are stored in the complex vector Lambda. The real and imaginary parts of the $\mathrm{i}^{\text {th }}$ eigenvalue are stored in Lambda(i). X and Lambda(i).Y, respectively. The eigenvalues are unordered, except that complex conjugate pairs appear consecutively with the value having the positive imaginary part first.

Function MathErr returns the following error codes:

- 0 if no error
- (-i) if an error occurred during the determination of the $i^{\text {th }}$ eigenvalue. The eigenvalues should be correct for the indices $>\mathrm{i}$.

This procedure destroys the original matrix \mathbf{A}.

- procedure EigenVect(A, Lb, Ub, Lambda, V) computes the eigenvalues and eigenvectors of the real square matrix A[Lb. . Ub, Lb. .Ub].

Eigenvalues are stored in the complex vector Lambda, just like with EigenVals.

Eigenvectors are stored along the columns of the real matrix \mathbf{V}.
If the $\mathrm{i}^{\text {th }}$ eigenvalue is real, the $\mathrm{i}^{\text {th }}$ column of \mathbf{V} contains its eigenvector. If the $\mathrm{i}^{\text {th }}$ eigenvalue is complex with positive imaginary part, the $\mathrm{i}^{\text {th }}$ and $(i+1)^{\text {th }}$ columns of \mathbf{V} contain the real and imaginary parts of its eigenvector. The eigenvectors are unnormalized.

Function MathErr returns the same error codes than EigenVals. If the error code is not null, none of the eigenvectors has been found.

This procedure destroys the original matrix \mathbf{A}.

6.11 Demo programs

These programs are located in the demo\matrices subdirectory.

6.11.1 Determinant and inverse of a square matrix

Program detinv.pas computes the determinant and inverse of a square matrix. The inverse matrix is re-inverted and the result (which should be equal to the original matrix) is printed. The determinant of the inverse matrix is also evaluated and the product of the two determinants (which should be -1) is displayed.

The example matrix is:

$$
\mathbf{A}=\left[\begin{array}{rrrr}
1 & 2 & 0 & -1 \\
-1 & 4 & 3 & -0.5 \\
2 & 2 & 1 & -3 \\
0 & 0 & 3 & -4
\end{array}\right]
$$

The inverse is:

$$
\mathbf{A}^{-1}=\left[\begin{array}{rrrr}
-\frac{41}{21} & \frac{4}{21} & \frac{11}{7} & -\frac{5}{7} \\
\frac{16}{21} & \frac{1}{21} & -\frac{5}{14} & \frac{1}{14} \\
-\frac{40}{21} & \frac{8}{21} & \frac{8}{7} & -\frac{3}{7} \\
-\frac{10}{7} & \frac{2}{7} & \frac{6}{7} & -\frac{4}{7}
\end{array}\right]
$$

or, in approximate form:

$$
\mathbf{A}^{-1} \approx\left[\begin{array}{rrrr}
-1.9523 & 0.1905 & 1.5714 & -0.7143 \\
0.7619 & 0.0476 & -0.3571 & 0.0714 \\
-1.9048 & 0.3810 & 1.1429 & -0.4286 \\
-1.4286 & 0.2857 & 0.8571 & -0.5714
\end{array}\right]
$$

The determinant is -21 .

6.11.2 Hilbert matrices

Program hilbert.pas tests the Gauss-Jordan method by solving a series of Hilbert systems of increasing order. Such systems have matrices of the form:

$$
\mathbf{A}=\left[\begin{array}{cccccc}
1 & \frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \cdots & \frac{1}{N} \\
\frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \frac{1}{5} & \cdots & \frac{1}{N+1} \\
\frac{1}{3} & \frac{1}{4} & \frac{1}{5} & \frac{1}{6} & \cdots & \frac{1}{N+2} \\
\frac{1}{4} & \frac{1}{5} & \frac{1}{6} & \frac{1}{7} & \cdots & \frac{1}{N+3} \\
\vdots & & & & & \vdots \\
\frac{1}{N} & \frac{1}{N+1} & \frac{1}{N+2} & \frac{1}{N+3} & \cdots & \frac{1}{2 N-1}
\end{array}\right]
$$

Each element of the constant vector (stored in the $(N+1)^{t h}$ column of $\operatorname{matrix} \mathbf{A}$) is equal to the sum of the terms in the corresponding line of the matrix :

$$
A_{i, N+1}=\sum_{j=1}^{N} A_{i j}
$$

The solution of such a system is $[1,1,1, \cdots 1]$
The determinant of the Hilbert matrix tends towards zero when the order increases. The program stops when the determinant becomes too low with respect to the numerical precision of the floating point numbers. This occurs at order 13 in double precision.

6.11.3 Gauss-Jordan method: single constant vector

Program lineq1.pas solves the linear system $\mathbf{A X}=\mathbf{B}$. After a call to LinEq, \mathbf{A} contains the inverse matrix and \mathbf{B} contains the solution vector.

The example system matrix is:

$$
\mathbf{A}=\left[\begin{array}{rrrr}
2 & 1 & 5 & -8 \\
7 & 6 & 2 & 2 \\
-1 & -3 & -10 & 4 \\
2 & 2 & 2 & 1
\end{array}\right]
$$

The constant vector is:

$$
\mathbf{B}=\left[\begin{array}{r}
0 \\
17 \\
-10 \\
7
\end{array}\right]
$$

The solution vector is:

$$
\mathbf{X}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]
$$

The determinant is -135

6.11.4 Gauss-Jordan method: multiple constant vectors

Program lineqm.pas solves a series of linear systems with the same system matrix and several constant vectors. The system matrix is stored in the first n columns of matrix \mathbf{A}; the constant vectors are stored in the following columns. After a call to GaussJordan, the first n columns of A contain the inverse matrix and the following columns contain the solution vectors.

The example system matrix from the previous program is used. The matrix of constant vectors is:

$$
\left[\begin{array}{rrrrr}
0 & -15 & 14 & -13 & 5 \\
17 & 50 & 1 & 84 & 30 \\
-10 & -5 & -12 & -51 & -15 \\
7 & 17 & 1 & 37 & 10
\end{array}\right]
$$

The solution matrix is:

$$
\left[\begin{array}{rrrrr}
1 & 2 & 1 & 4 & 0 \\
1 & 5 & -1 & 5 & 5 \\
1 & 0 & 1 & 6 & 0 \\
1 & 3 & -1 & 7 & 0
\end{array}\right]
$$

6.11.5 LU, QR and SV decompositions

The demo programs test_lu.pas, test_qr.pas and test_svd.pas solve the linear system used by lineq1.pas (paragraph 6.11.3) with the LU, QR, and singular value decompositions, respectively.

6.11.6 Cholesky decomposition

Program cholesk.pas performs the Cholesky decomposition of a positive definite symmetric matrix. The matrix is decomposed then the program computes the product $\mathbf{L L}{ }^{\top}$ which must give the original matrix.

The example matrix is:

$$
\mathbf{A}=\left[\begin{array}{lll}
60 & 30 & 20 \\
30 & 20 & 15 \\
20 & 15 & 12
\end{array}\right]
$$

Its Cholesky factor is:

$$
\mathbf{L}=\left[\begin{array}{rrr}
2 \sqrt{15} & 0 & 0 \\
\sqrt{15} & \sqrt{5} & 0 \\
\frac{2}{3} \sqrt{15} & \sqrt{5} & \frac{1}{3} \sqrt{3}
\end{array}\right]
$$

or, in approximate form:

$$
\mathbf{L} \approx\left[\begin{array}{lll}
7.745967 & 0 & 0 \\
3.872983 & 2.236068 & 0 \\
2.581989 & 2.236068 & 0.577350
\end{array}\right]
$$

6.11.7 Eigenvalues of a symmetric matrix

Program eigensym. pas computes the eigenvalues and eigenvectors of Hilbert matrices (see program hilbert.pas) by the method of Jacobi. Such matrices are very ill-conditioned, which can be seen from the high ratio between the highest and lowest eigenvalues (the condition number).

6.11.8 Eigenvalues of a general square matrix

Program eigenval.pas computes the eigenvalues of a general square matrix.
The example matrix from the detinv.pas program is used. It has two real and two complex (conjugate) eigenvalues:

```
-1.075319 + 1.709050 * i
-1.075319 - 1.709050 * i
-1.000000
    5.150639
```


6.11.9 Eigenvalues and eigenvectors of a general square matrix

Program eigenvec.pas computes both the eigenvalues and eigenvectors of a general square matrix. The same example matrix is used.

The eigenvectors are stored columnwise in a matrix V. In order to retrieve the eigenvectors associated with complex eigenvalues, the program takes into account the following properties:

- Complex conjugate pairs of eigenvalues are stored consecutively in vector Lambda, with the value having the positive imaginary part first.
- If the $\mathrm{i}^{\text {th }}$ eigenvalue is complex with positive imaginary part, the $\mathrm{i}^{\text {th }}$ and $(i+1)^{\text {th }}$ columns of matrix \mathbf{V} contain the real and imaginary parts of its eigenvector.
- Eigenvectors associated with complex conjugate eigenvalues are themselves complex conjugate.

Hence the algorithm:

```
if Lambda^[I].Y = 0.0 then
    { Eigenvector is in column I of V }
else if Lambda`[I].Y > 0.0 then
    { Real and imag. parts of eigenvector are in columns I and (I+1)
            For component K: real part = V^[K]^[I],
                                imag. part = V^[K]^[I+1] }
else
    { Real and imag. parts of eigenvector are in columns (I-1) and I
        For component K: real part = V^[K]^[I-1],
                            imag. part = - V^[K]^[I] }
```

The results obtained with the example matrix are the following:
Eigenvalue:

$$
-1.075319+1.709050 * i
$$

Eigenvector:

$-0.220224+$	$0.394848 * i$
$0.078289-$	$0.303345 * i$
$0.029348+$	$0.787594 * i$
$0.374358+$	$0.589119 * i$

Eigenvalue:
-1.075319 - 1.709050 * i
Eigenvector:

$-0.220224-$	$0.394848 * i$
0.078289	$0.303345 * i$
$0.029348-$	$0.787594 * i$
$0.374358-$	$0.589119 * i$

Eigenvalue:
-1.000000

Eigenvector:
2.605054
-1. 042021
3. 126065
3. 126065

Eigenvalue:
5.150638

Eigenvector:
0.345194
0.788801
0.441744
0.144823

Chapter 7

Function minimization

This chapter describes the procedures and functions available in TPMath to minimize functions of one or several variables. Only deterministic optimizers are considered here. Stochastic optimization will be studied in another chapter.

7.1 Functions of one variable

Let Func be a function of a real variable X. In TPMath such a function is declared as:

```
function Func(X : Float) : Float;
```

There is a special type TFunc for this kind of functions.
The problem is to find the real Xmin for which Func (X) is minimal.
Procedure GoldSearch(Func, A, B, MaxIter, Tol, Xmin, Ymin) performs the minimization by the 'golden search' method. This means that, at each iteration, the number Xmin is 'bracketed' by a triplet (A, B, C) such that:

- $A<B<C$
- A, B, C are within the golden mean ϕ, i.e.

$$
\frac{B-A}{C-B}=\frac{C-A}{B-A}=\phi=\frac{1+\sqrt{5}}{2} \approx 1.618
$$

- Func (B) < Func (A) and Func (B) < Func (C).

The user must provide two numbers A and B which define the 'unit vector' on the X axis. The number C is found by the program itself. It is not necessary that the interval [A, B] contains the minimum.

The user must also provide:

- the maximum number of iterations MaxIter
- the tolerance Tol with which the minimum must be located. This value should not be higher than the square root of the machine precision $\left(\right.$ MachEp $^{1 / 2} \approx 1.5 \times 10^{-8}$ in double precision)

The procedure returns the coordinates (Xmin, Ymin) of the minimum.
After a call to GoldSearch, function MathErr () will return one of two error codes:

- OptOk if no error occurred
- OptNonConv (non-convergence) if the number of iterations exceeds the maximum value MaxIter

The determination of the bracketing triplet A, B, C is performed within GoldSearch by a call to a procedure MinBrack. This procedure may be called independently. Its syntax is:

MinBrack(Func, A, B, C, Fa, Fb, Fc)
The user must provide the first two numbers A and B. The number C is found by the procedure. The corresponding values of the function are returned in $\mathrm{Fa}, \mathrm{Fb}, \mathrm{Fc}$.

7.2 Functions of several variables

Let Func be a function of a real vector \mathbf{x} such that $\mathbf{x}=\left[x_{1}, x_{2}, \cdots\right]$. In TPMath such a function is declared as:

```
function Func(X : PVector) : Float;
```

There is a special type TFuncNVar for this kind of functions.
The problem is to find the vector X for which $\operatorname{Func}(\mathrm{X})$ is minimal.

7.2.1 Minimization along a line

If \mathbf{x}^{0} is a starting point and $\delta \mathbf{x}$ is a constant vector, minimizing f from \mathbf{x}^{0} along the direction specified by $\delta \mathbf{x}$ is equivalent to finding the number r such that $g(r)=f\left(\mathbf{x}^{0}+r \cdot \delta \mathbf{x}\right)$ is minimal.

The following procedure:

```
LinMin(Func, X, DeltaX, Lb, Ub, R, MaxIter, Tol, F_min)
```

will minimize function Func from point $\mathrm{X}[\mathrm{Lb} . \mathrm{Ub}]$ in the direction specified by vector DeltaX [Lb. .Ub]. R is the initial step in that direction, expressed as a fraction of the norm of DeltaX. If R is set to 0 or a negative value, the procedure will use the default value $R=1$. The user must also provide the maximum number of iterations MaxIter and the tolerance Tol, as for procedure GoldSearch.

On output, LinMin returns:

- the coordinates of the minimum in X()
- the step corresponding to the minimum in R
- the function value at the minimum in F min

After a call to LinMin, function MathErr () will return one of the error codes OptOk or OptNonConv, as with GoldSearch.

7.2.2 Newton-Raphson method

The Newton-Raphson method starts with an approximation \mathbf{x}^{0} for the coordinates of the minimum and generates a new approximation \mathbf{x} by using the second-order Taylor series expansion of function f around \mathbf{x}^{0} :

$$
\begin{equation*}
f(\mathbf{x})=f\left(\mathbf{x}^{0}\right)+\left(\mathbf{x}-\mathbf{x}^{0}\right)^{\top} \cdot \mathbf{g}\left(\mathbf{x}^{0}\right)+\frac{1}{2}\left(\mathbf{x}-\mathbf{x}^{0}\right)^{\top} \cdot \mathbf{H}\left(\mathbf{x}^{0}\right) \cdot\left(\mathbf{x}-\mathbf{x}^{0}\right) \tag{7.1}
\end{equation*}
$$

\mathbf{g} denotes the gradient vector (vector of first partial derivatives) and \mathbf{H} denotes the hessian matrix (matrix of second partial derivatives). For instance, for a fonction of two variables $f\left(x_{1}, x_{2}\right)$:

$$
\mathbf{g}\left(\mathbf{x}^{0}\right)=\left[\begin{array}{c}
\frac{\partial f}{\partial x_{1}}\left(x_{1}^{0}, x_{2}^{0}\right) \\
\frac{\partial f}{\partial x_{2}}\left(x_{1}^{0}, x_{2}^{0}\right)
\end{array}\right]
$$

$$
\mathbf{H}\left(\mathbf{x}^{0}\right)=\left[\begin{array}{cc}
\frac{\partial^{2} f}{\partial x_{1}^{2}}\left(x_{1}^{0}, x_{2}^{0}\right) & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}}\left(x_{1}^{0}, x_{2}^{0}\right) \\
\frac{\partial^{2} f}{\partial x_{2} \partial x_{1}}\left(x_{1}^{0}, x_{2}^{0}\right) & \frac{\partial^{2} f}{\partial x_{2}^{2}}\left(x_{1}^{0}, x_{2}^{0}\right)
\end{array}\right]
$$

By differentiating eq. (1) we obtain the gradient of f at point \mathbf{x} :

$$
\begin{equation*}
\mathrm{g}(\mathrm{x})=\mathrm{g}\left(\mathrm{x}^{0}\right)+\mathbf{H}\left(\mathrm{x}^{0}\right) \cdot\left(\mathrm{x}-\mathrm{x}^{0}\right) \tag{7.2}
\end{equation*}
$$

If x is sufficiently close to the minimum, $\mathrm{g}(\mathrm{x}) \approx 0$ so:

$$
\mathrm{x}=\mathrm{x}^{0}-\mathrm{H}^{-1}\left(\mathrm{x}^{0}\right) \cdot \mathrm{g}\left(\mathrm{x}^{0}\right)
$$

In practice, it is better to determine the step k which minimizes the function in the direction specified by $-\mathbf{H}^{-1}\left(\mathrm{x}^{0}\right) \cdot \mathrm{g}\left(\mathrm{x}^{0}\right)$:

$$
\mathbf{x}=\mathbf{x}^{0}-k \cdot \mathbf{H}^{-1}\left(\mathbf{x}^{0}\right) \cdot \mathbf{g}\left(\mathbf{x}^{0}\right)
$$

The determination of k is performed by line minimization.
The following procedure:
Newton(Func, HessGrad, X, Lb, Ub, MaxIter, Tol, F_min, G, H_inv, Det)
minimizes function Func by the Newton-Raphson method.
The user must provide a procedure HessGrad to compute the gradient G and the hessian H of the function at point X . This procedure is declared as:

```
procedure HessGrad(X, G : PVector; H : PMatrix);
```

which corresponds to type THessGrad.
MaxIter and Tol have their usual meaning.
On output, Newton returns:

- the coordinates of the minimum in X
- the function value at the minimum in F-min
- the gradient at the minimum in G (should be near 0)
- the inverse hessian matrix at the minimum in H_inv
- the determinant of the hessian matrix at the minimum in Det

After a call to Newton, function MathErr () will return one of three error codes:

- OptOk if no error occurred
- OptNonConv (non-convergence) if the number of iterations exceeds the maximum value MaxIter
- OptSing if the hessian matrix is quasi-singular

Approximate gradient and hessian

Although it is recommended to compute the gradient and hessian from analytical derivatives, approximate values may be found using finite difference approximations:

$$
\begin{gathered}
\frac{\partial f}{\partial x_{i}}(\mathbf{x}) \approx \frac{f\left(x_{i}+h_{i}\right)-f\left(x_{i}-h_{i}\right)}{2 h_{i}} \\
\frac{\partial^{2} f}{\partial x_{i}^{2}}(\mathbf{x}) \approx \frac{f\left(x_{i}+h_{i}\right)+f\left(x_{i}-h_{i}\right)-2 f\left(x_{i}\right)}{h_{i}^{2}} \\
\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(\mathbf{x}) \approx \frac{f\left(x_{i}+h_{i}, x_{j}+h_{j}\right)-f\left(x_{i}+h_{i}, x_{j}\right)-f\left(x_{i}, x_{j}+h_{j}\right)+f\left(x_{i}, x_{j}\right)}{h_{i} h_{j}}
\end{gathered}
$$

The increment h_{i} is such that $h_{i}=\eta\left|x_{i}\right|$ where η is a constant which should not be less than the cube root of the machine epsilon (MachEp ${ }^{1 / 3} \approx$ 6.06×10^{-6} in double precision).

This method is illustrated in the demo programs testnewt.pas and testmarq.pas (see paragraph 7.3).

7.2.3 Marquardt method

This method is a variant of the Newton-Raphson method, in which each diagonal term of the hessian matrix is multiplied by a scalar equal to $(1+\lambda)$, where λ is the Marquardt parameter. This parameter is initialized at some small value (e.g. 10^{-2}) at the beginning of the iterations, then it is decreased by a factor 10 if the iteration leads to a decrease of the function, otherwise it is increased by a factor 10 . This procedure usually improves the convergence of the Newton-Raphson method.

If the method converges, λ should reach a very small value, so that the Marquardt and Newton-Raphson algorithms should produce identical results for the inverse hessian matrix. However, this is not guaranteed, so that, if a precise inverse hessian is required, it may be useful to perform a single iteration of the Newton-Raphson method once Marquardt's algorithm has successfully terminated (see demo program testmarq.pas).

This procedure is implemented as:
Marquardt(Func, HessGrad, X, Lb, Ub, MaxIter, Tol, F_min, G, H_inv, Det)
It is used like Newton, except that an additional error code, OptBigLambda, may be returned by MathErr if the Marquard parameter increases beyond a predefined value (10^{3} in this implementation).

7.2.4 BFGS method

The BFGS (Broyden-Fletcher-Goldfarb-Shanno) method is another variant of the Newton method in which the hessian matrix does not need to be computed explicitly. It is said a quasi-Newton method.

The BFGS algorithm uses the following formula to construct the inverse hessian matrix iteratively:

$$
\mathbf{H}_{i+1}^{-1}=\mathbf{H}_{i}^{-1}+\frac{\delta \mathbf{x} \cdot \delta \mathbf{x}^{\top}}{\delta \mathbf{x}^{\top} \cdot \delta \mathbf{g}}-\frac{\left(\mathbf{H}_{i}^{-1} \cdot \delta \mathbf{g}\right) \cdot\left(\mathbf{H}_{i}^{-1} \cdot \delta \mathbf{g}\right)^{\top}}{\delta \mathbf{g}^{\top} \cdot \mathbf{H}_{i}^{-1} \cdot \delta \mathbf{g}}+\left(\delta \mathbf{g}^{\top} \cdot \mathbf{H}_{i}^{-1} \cdot \delta \mathbf{g}\right) \cdot \mathbf{u} \cdot \mathbf{u}^{\top}
$$

with:

$$
\delta \mathbf{x}=\mathbf{x}_{i+1}-\mathbf{x}_{i} \quad \delta \mathbf{g}=\mathbf{g}\left(\mathbf{x}_{i+1}\right)-\mathbf{g}\left(\mathbf{x}_{i}\right) \quad \mathbf{u}=\frac{\delta \mathbf{x}}{\delta \mathbf{x}^{\top} \cdot \delta \mathbf{g}}-\frac{\mathbf{H}_{i}^{-1} \cdot \delta \mathbf{g}}{\delta \mathbf{g}^{\top} \cdot \mathbf{H}_{i}^{-1} \cdot \delta \mathbf{g}}
$$

The algorithm is usually started with the identity matrix $\left(\mathbf{H}_{0}^{-1}=\mathbf{I}\right)$.
This procedure is implemented as:
BFGS(Func, Gradient, X, Lb, Ub, MaxIter, Tol, F_min, G, H_inv)

The user must provide a procedure Gradient to compute the gradient G of the function at point X . This procedure is declared as:

```
procedure Gradient(X, G : PVector);
```

which corresponds to type TGradient.
The other parameters have the same meaning than in Newton.

Approximate gradient

It is possible to estimate the gradient of function Func by finite difference approximations, as described for the Newton method. Here the relative increment η should not be less than the square root of the machine epsilon (about 1.5×10^{-8} in double precision).

See demo program testbfgs.pas for an example.
As usual, it is recommended to use analytical derivatives whenever possible.

7.2.5 Simplex method

Unlike previous methods, the simplex method of Nelder and Mead does not use derivatives to locate the minimum. Instead it constructs a geometrical figure (the 'simplex') having $(n+1)$ vertices, if n is the number of variables. For instance, in the two-dimensional space ($n=2$), the simplex would be a triangle. Depending on the function values at the vertices, the simplex is reduced or expanded until it comes close to the minimum.

This method is implemented as:

Simplex (Func, X, Lb, Ub, MaxIter, Tol, F_min)
where the parameters have their usual meaning.

7.2.6 Log files

It is possible to create 'log files' which save the progress of the iterations. If the algorithm terminates abnormally, checking these files may help finding the error. For each method (Newton, Marquard, BFGS, Simplex) there is a Save... procedure which creates the log file. Each procedure accepts the name of the file as its parameter (e.g. SaveBFGS('bfgs.txt')). The file is automatically closed when the optimization procedure ends.

See the demo programs for examples using such files.

7.3 Demo programs

These programs are located in the demo\optim subdirectory.

7.3.1 Function of one variable

Program minfunc.pas performs the golden search minimization on the function:

$$
f(x)=e^{-2 x}-e^{-x}
$$

The minimum is at $(\ln 2,-1 / 4)$.
The minimum found by GoldSearch is compared with the true minimum.

7.3.2 Minimization along a line

Program minline.pas applies line minimization to the function of 3 variables (taken from the Numerical Recipes example book) :

$$
f\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}-1\right)^{2}+\left(x_{2}-1\right)^{2}+\left(x_{3}-1\right)^{2}
$$

The minimum is $f(1,1,1)=0$, i. e. for a step $r=1$ from $\mathbf{x}=[0,0,0]$ in the direction $\delta \mathbf{x}=[1,1,1]$.

The program tries a series of directions:

$$
\delta \mathbf{x}=\left[\sqrt{2} \cos \left(i \frac{\pi}{20}\right), \sqrt{2} \sin \left(i \frac{\pi}{20}\right), 1\right] \quad i=1 . .10
$$

For each pass, the location of the minimum, and the value of the function at the minimum, are printed. The true minimum is found at $i=5$.

7.3.3 Newton-Raphson method

Program testnewt.pas uses the Newton-Raphson method to minimize Rosenbrock's function (H. Rosenbrock, Comput. J., 1960, 3, 175):

$$
f(x, y)=100\left(y-x^{2}\right)^{2}+(1-x)^{2}
$$

for which the gradient and hessian are:

$$
\begin{array}{r}
\mathbf{g}(x, y)=\left[\begin{array}{cc}
-400\left(y-x^{2}\right) x-2+2 x \\
200 y-200 x^{2}
\end{array}\right] \\
\mathbf{H}(x, y)=\left[\begin{array}{cc}
1200 x^{2}-400 y+2 & -400 x \\
-400 x & 200
\end{array}\right]
\end{array}
$$

and the determinant of the hessian is:

$$
\operatorname{det} \mathbf{H}(x, y)=80000\left(x^{2}-y\right)+400
$$

The minimum is $f(1,1)=0$, where:

$$
\begin{gathered}
\mathbf{g}(1,1)=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
\mathbf{H}^{-1}(1,1)=\left[\begin{array}{cc}
\frac{1}{2} & 1 \\
1 & \frac{401}{200}
\end{array}\right] \\
\operatorname{det} \mathbf{H}(1,1)=400
\end{gathered}
$$

In the demo program, the gradient and hessian are computed analytically. You can compare with the numerical computations by including file numhess.inc in the program.

7.3.4 Other programs

Programs testmarq.pas, testbfgs.pas and testsimp.pas minimize Rosenbrock's function with the Marquardt, BFGS and Simplex methods, respectively.

Chapter 8

Nonlinear equations

This chapter describes the procedures available in TPMath to solve nonlinear equations in one or several variables. Only general methods are considered here. Polynomial equations will be studied in the next chapter.

8.1 Equations in one variable

The goal is to solve the nonlinear equation $f(x)=0$, or, in other terms, find a root of function f.

8.1.1 Bisection method

Procedure Bisect(Func, X, Y, MaxIter, Tol, F) finds a root of function Func by the bisection method. At each iteration, the root is bounded by two numbers (X, Y) such that the function has opposite signs. Then, a new approximation to the root is generated by taking the mean of these numbers.

The function Func must be declared as:

```
function Func(X : Float) : Float;
```

The user must provide initial values for X and Y . It is not necessary that the interval $[\mathrm{X}, \mathrm{Y}]$ contains the root.

The user must also provide:

- the maximum number of iterations MaxIter
- the tolerance Tol with which the root must be located.

The procedure returns the refined values of X and Y and the function value Func (X) in F.

After a call to Bisect, function MathErr() will return one of two error codes:

- OptOk if no error occurred
- OptNonConv (non-convergence) if the number of iterations exceeds the maximum value MaxIter

If the starting interval $[\mathrm{X}, \mathrm{Y}]$ does not contain the root, Bisect will expand it by calling a procedure RootBrack. This procedure may be called independently. Its syntax is:

```
RootBrack(Func, X, Y, FX, FY)
```

The user must provide initial values for the two numbers X and Y , which will be refined by the procedure. The corresponding function values are returned in FX and FY.

8.1.2 Secant method

The secant method also starts with two approximations x and y and generates a new approximation z from the formula:

$$
z=\frac{x f(y)-y f(x)}{f(y)-f(x)}
$$

z is the intersection of the $O x$ axis with the line connecting the points $(x, f(x))$ and $(y, f(y))$, i. e. the secant.

This method is implemented as:

```
Secant(Func, X, Y, MaxIter, Tol, F)
```

The parameters and error codes are the same than in Bisect. Here too, it is not necessary that the interval $[\mathrm{X}, \mathrm{Y}]$ contains the root.

8.1.3 Newton-Raphson method

The Newton-Raphson method starts with an approximate root x^{0} and generates a new approximation x by using the first-order Taylor series expansion of function f around x^{0} :

$$
f(x) \approx f\left(x^{0}\right)+f^{\prime}\left(x^{0}\right) \cdot\left(x-x^{0}\right)
$$

If x is sufficiently close to the root, $f(x) \approx 0$ so:

$$
x=x^{0}-\frac{f\left(x^{0}\right)}{f^{\prime}\left(x^{0}\right)}
$$

This method is implemented as:

```
NewtEq(Func, Deriv, X, MaxIter, Tol, F)
```

where Func and Deriv are the procedures which compute the function and its derivative, respectively (they have the same syntax). The user must provide the initial approximation X .

After a call to NewtEq, function MathErr () will return one of three error codes:

- OptOk if no error occurred
- OptNonConv (non-convergence) if the number of iterations exceeds the maximum value MaxIter
- OptSing if the derivative becomes zero

8.2 Equations in several variables

The goal is to solve a system of n nonlinear equations in n unknowns $x_{1}, x_{2}, \cdots x_{n}$:

$$
\begin{gathered}
f_{1}\left(x_{1}, x_{2}, \cdots x_{n}\right)=0 \\
f_{2}\left(x_{1}, x_{2}, \cdots x_{n}\right)=0 \\
\cdots \cdots \cdots \cdots \cdots \cdots \cdots \\
f_{n}\left(x_{1}, x_{2}, \cdots x_{n}\right)=0
\end{gathered}
$$

or, in matrix notation:

$$
\mathbf{f}(\mathbf{x})=\mathbf{0}
$$

where \mathbf{f} is a function vector.

8.2.1 Newton-Raphson method

The Newton-Raphson method starts with an approximate root \mathbf{x}^{0} and generates a new approximation \mathbf{x} by using the first-order Taylor series expansion of function \mathbf{f} around \mathbf{x}^{0} :

$$
\mathbf{f}(\mathrm{x}) \approx \mathbf{f}\left(\mathrm{x}^{0}\right)+\mathbf{D}\left(\mathrm{x}^{0}\right) \cdot\left(\mathrm{x}-\mathrm{x}^{0}\right)
$$

D denotes the jacobian matrix (matrix of first partial derivatives). For instance, for a system of 2 equations in two variables:

$$
\begin{aligned}
& f_{1}\left(x_{1}, x_{2}\right)=0 \\
& f_{2}\left(x_{1}, x_{2}\right)=0
\end{aligned}
$$

the jacobian matrix is:

$$
\mathbf{D}\left(\mathbf{x}^{0}\right)=\left[\begin{array}{ll}
\frac{\partial f_{1}}{\partial x_{1}}\left(x_{1}^{0}, x_{2}^{0}\right) & \frac{\partial f_{1}}{\partial x_{2}}\left(x_{1}^{0}, x_{2}^{0}\right) \\
\frac{\partial f_{2}}{\partial x_{1}}\left(x_{1}^{0}, x_{2}^{0}\right) & \frac{\partial f_{2}}{\partial x_{2}}\left(x_{1}^{0}, x_{2}^{0}\right)
\end{array}\right]
$$

If \mathbf{x} is sufficiently close to the root, $\mathbf{f}(\mathbf{x}) \approx 0$ so:

$$
\mathrm{x}=\mathrm{x}^{0}-\mathrm{D}^{-1}\left(\mathrm{x}^{0}\right) \cdot \mathbf{f}\left(\mathrm{x}^{0}\right)
$$

In practice, it is better to determine a step k in the direction specified by $\mathrm{D}^{-1}\left(\mathrm{x}^{0}\right) \cdot \mathbf{f}\left(\mathrm{x}^{0}\right)$:

$$
\mathbf{x}=\mathbf{x}^{\mathbf{0}}-k \cdot \mathbf{D}^{-1}\left(\mathbf{x}^{0}\right) \cdot \mathbf{f}\left(\mathbf{x}^{0}\right)
$$

The determination of k is performed by line minimization applied to the sum of squared functions:

$$
S(\mathbf{x})=\sum_{i=1}^{n} f_{i}(\mathbf{x})^{2}
$$

This method is implemented as:
NewtEqs(Equations, Jacobian, X, F, Lb, Ub, MaxIter, Tol)
where Equations and Jacobian are the procedures which compute the function vector and the jacobian matrix, respectively. Their syntaxes are:

```
procedure Equations(X, F : PVector);
procedure Jacobian(X : PVector; D : PMatrix);
```

They correspond to types TEquations and TJacobian, respectively.
The user must provide the initial approximations to the roots in vector $\mathrm{X}[\mathrm{Lb} . . \mathrm{Ub}]$. After refinement by the procedure, the corresponding function values are returned in vector F.

The possible error codes returned by MathErr are:

- OptOk if no error occurred
- OptNonConv (non-convergence) if the number of iterations exceeds the maximum value MaxIter
- OptSing if the jacobian matrix is quasi-singular

Approximate jacobian

Approximate values of the jacobian matrix may be computed using finite difference approximations:

$$
\frac{\partial f_{i}}{\partial x_{j}}(\mathbf{x}) \approx \frac{f_{i}\left(x_{j}+h_{j}\right)-f_{i}\left(x_{j}-h_{j}\right)}{2 h_{j}}
$$

The increment h_{j} is such that $h_{j}=\eta\left|x_{j}\right|$ where η is a constant which should not be less than the square root of the machine epsilon ($\operatorname{MachEp}^{1 / 2}$).

The demo program testnr.pas gives an example of using such a procedure.

As usual, it is recommended to use analytical expressions for the derivatives whenever possible.

8.2.2 Broyden's method

This method is similar to the BFGS method of function minimization. It can also be viewed as a multidimensional version of the secant method.

Broyden's algorithm uses the following formula to construct the inverse jacobian matrix iteratively:

$$
\mathbf{D}_{i+1}^{-1}=\mathbf{D}_{i}^{-1}+\frac{\left[\left(\delta \mathbf{x}-\mathbf{D}_{i}^{-1} \cdot \delta \mathbf{f}\right) \cdot \delta \mathbf{x}^{\top}\right] \cdot \mathbf{D}_{i}^{-1}}{\delta \mathbf{x}^{\top} \cdot \mathbf{D}_{i}^{-1} \cdot \delta \mathbf{f}}
$$

with:

$$
\delta \mathbf{x}=\mathbf{x}_{i+1}-\mathbf{x}_{i} \quad \delta \mathbf{f}=\mathbf{f}\left(\mathbf{x}_{i+1}\right)-\mathbf{f}\left(\mathbf{x}_{i}\right)
$$

The algorithm is usually started with the identity matrix $\left(\mathbf{D}_{0}^{-1}=\mathbf{I}\right)$.
This method is implemented as: Broyden(Equations, X, F, Lb, Ub, MaxIter, Tol), where the parameters have the same significance than in NewtEqs.

The possible error codes returned by MathErr are OptOk and OptNonConv.

8.3 Demo programs

8.3.1 Equations in one variable

The demo programs testbis.pas, testsec.pas and testnr1.pas demonstrate the bisection, secant and Newton-Raphson methods, respectively, on the equation:

$$
f(x)=x \ln x-1=0
$$

for which the derivative is:

$$
f^{\prime}(x)=\ln x+1
$$

The true solution is $x=1.763222834 \ldots$

8.3.2 Equations in several variables

The demo programs testnr. pas and testbrdn. pas demonstrate the NewtonRaphson and Broyden methods, respectively, on the following system (taken from the Numerical Recipes example book) :

$$
\begin{gathered}
f(x, y)=x^{2}+y^{2}-2=0 \\
g(x, y)=\exp (x-1)+y^{3}-2=0
\end{gathered}
$$

for which the jacobian is:

$$
\mathbf{D}(x, y)=\left[\begin{array}{cc}
2 x & 2 y \\
\exp (x-1) & 3 y^{2}
\end{array}\right]
$$

The true solution is $(x, y)=(1,1)$.

Chapter 9

Polynomials

This chapter describes the procedures and functions related to polynomials and rational fractions.

9.1 Polynomials

Function Poly (X, Coef, Deg) evaluates the polynomial:

$$
P(X)=\operatorname{Coef}[0]+\operatorname{Coef}[1] \cdot X+\operatorname{Coef}[2] \cdot X^{2}+\cdots+\operatorname{Coef}[\mathrm{Deg}] \cdot X^{\mathrm{Deg}}
$$

9.2 Rational fractions

Function RFrac(X, Coef, Deg1, Deg2) evaluates the rational fraction:

$$
F(X)=\frac{\operatorname{Coef}[0]+\operatorname{Coef}[1] \cdot X+\cdots+\operatorname{Coef}[\operatorname{Deg} 1] \cdot X^{\operatorname{Deg} 1}}{1+\operatorname{Coef}[\operatorname{Deg} 1+1]+\cdots+\operatorname{Coef}[\operatorname{Deg} 1+\operatorname{Deg} 2] \cdot \mathrm{X}^{\operatorname{Deg} 2}}
$$

9.3 Roots of polynomials

Analytical methods can be used to compute the roots of polynomials up to degree 4. For higher degrees, iterative methods must be used.

9.3.1 Analytical methods

- Function RootPol1 (A, B, X) solves the linear equation $A+B X=0$. The function returns 1 if no error occurs $(B \neq 0),-1$ if X is undetermined $(A=B=0),-2$ if there is no solution $(A \neq 0, B=0)$.
- Functions RootPoln(Coef, Z), with $n=2,3,4$, solve the equation:

$$
\operatorname{Coef}[0]+\operatorname{Coef}[1] \cdot X+\operatorname{Coef}[2] \cdot X^{2}+\cdots+\operatorname{Coef}[\mathrm{N}] \cdot X^{\mathrm{N}}=0
$$

The roots are stored in the complex vector Z . The real part of the $i^{\text {th }}$ root is in $\mathrm{Z}^{\wedge}[\mathrm{i}] . \mathrm{X}$, the imaginary part in Z^{\wedge} [i]. Y .

If no error occurs, the function returns the number of real roots, otherwise it returns (-1) or (-2) just like RootPol1.

9.3.2 Iterative method

Function RootPol(Coef, Deg, Z) solves the polynomial equation:

$$
a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}=0
$$

by the method of the companion matrix.
The companion matrix \mathbf{A} is defined by:

$$
\mathbf{A}=\left[\begin{array}{ccccc}
-\frac{a_{n-1}}{a_{n}} & -\frac{a_{n-2}}{a_{n}} & \cdots & -\frac{a_{1}}{a_{n}} & -\frac{a_{0}}{a_{n}} \\
1 & 0 & \cdots & 0 & 0 \\
0 & 1 & \cdots & 0 & 0 \\
\vdots & & & & \vdots \\
0 & 0 & \cdots & 1 & 0
\end{array}\right]
$$

It may be shown that the eigenvalues of this matrix are equal to the roots of the polynomial (Eigenvalues are treated in § 6.10).

The coefficients of the polynomial are passed in vector Coef, such that Coef^[0] $=a_{0}$, Coef^[2] $=a_{1}$ etc. The degree of the polynomial is passed in Deg. The roots are returned in the complex vector Z as described before.

If no error occurred, the function returns the number of real roots.
If an error occurred during the search for the $\mathrm{i}^{\text {th }}$ root, the function returns (-i). The roots should be correct for indices (i+1)..Deg. The roots are unordered.

9.4 Ancillary functions

Two procedures have been added to facilitate the handling of polynomials roots:

- Function SetRealRoots(Deg, Z, Tol) allows to set the imaginary part of a root to zero if it is less than a fraction Tol of the real part. The function returns the total number of real roots.

Due to roundoff errors, some real roots may be computed with a very small imaginary part, e.g. $1+10^{-8} i$. The function SetRealRoots tries to correct this problem.

- Procedure SortRoots(Deg, Z) sort the roots such that:

1. The N real roots are stored in elements $1 . \mathrm{N}$ of vector Z , in increasing order.
2. The complex roots are stored in elements $(N+1)$. Deg of vector Z and are unordered.

9.5 Demo programs

These programs are located in the demo\polynom subdirectory.

9.5.1 Evaluation of a polynomial

Program evalpoly.pas evaluates a polynomial for a series of user-specified values. Entering 0 stops the program.

9.5.2 Evaluation of a rational fraction

Program evalfrac.pas performs the same task as the previous program, but with a rational fraction.

9.5.3 Roots of a polynomial

Program polyroot.pas computes the roots of a polynomial with real coefficients. Analytical methods are used up to degree 4, otherwise the method of the companion matrix is used.

The example polynomial is:

$$
x^{6}-21 x^{5}+175 x^{4}-735 x^{3}+1624 x^{2}-1764 x+720
$$

for which the roots are $1,2 \ldots 6$

Chapter 10

Numerical integration and differential equations

This chapter describes the procedures available in TPMath to integrate a function of one variable, and to solve systems of differential equations.

10.1 Integration

10.1.1 Trapezoidal rule

The trapezoidal rule approximates the integral I of a tabulated function by the formula:

$$
I \approx \frac{1}{2} \sum_{i=0}^{N-1}\left(x_{i+1}-x_{i}\right)\left(y_{i+1}+y_{i}\right)
$$

where $\left(x_{i}, y_{i}\right)$ are the coordinates of the $i^{\text {th }}$ point.
This procedure is implemented as function $\operatorname{TrapInt}(\mathrm{X}, \mathrm{Y}, \mathrm{N}$). Note that the lower bound of the arrays must be 0 .

10.1.2 Gauss-Legendre integration

This method approximates the integral of a function f in an interval $[a, b]$ by:

$$
\begin{gathered}
\int_{a}^{b} f(x) d x \approx \frac{b-a}{2} \sum_{i=1}^{N} w_{i} f\left(y_{i}\right) \\
y_{i}=\frac{b-a}{2} x_{i}+\frac{b+a}{2}
\end{gathered}
$$

The abscissae x_{i} and weights w_{i} are predefined values for a given number of points N.

This method is implemented as function GausLeg(Func, A, B) for $N=$ 16. Function Func must be declared as:

```
function Func(X : Float) : Float;
```

For the special case $A=0$ there is a variant GausLeg0 (Func, B).

10.2 Convolution

The convolution product of two functions f and g is defined by:

$$
(f * g)(t)=\int_{0}^{t} f(u) g(t-u) d u
$$

This product is often used to describe the ouput of a linear system when $f(t)$ is the input signal (function of time) and $g(t)$ is the impulse response of the system.

Function Convol(Func1, Func2, T) approximates the convolution product of the two functions Func1 and Func2 at time T by the Gauss-Legendre method. The functions must be declared as above.

10.3 Differential equations

The Runge-Kutta-Fehlberg (RKF) method allows to compute numerical solutions to systems of first-order differential equations of the form:

$$
\begin{aligned}
y_{1}^{\prime}(t) & =f_{1}\left[t, y_{1}(t), y_{2}(t), \cdots\right] \\
y_{2}^{\prime}(t) & =f_{2}\left[t, y_{1}(t), y_{2}(t), \cdots\right]
\end{aligned}
$$

where the f_{i} are known functions and the y_{i} are to be determined.
The RKF procedure is an extension of the classical Runge-Kutta method. For instance, in the case of a single differential equation

$$
y^{\prime}(t)=f[t, y(t)]
$$

this method generates a sequence $\left\{t_{n}, y_{n}\right\}$ which approximates the function $y(t)$.

The order of the method corresponds to the number of points used in the interval $\left[t_{n}, t_{n+1}\right]$. For instance, the sequence generated by the 4 -th order Runge-Kutta method is defined by:

$$
y_{n+1}=y_{n}+\frac{k_{1}}{6}+\frac{k_{2}}{3}+\frac{k_{3}}{3}+\frac{k_{4}}{6}
$$

with:

$$
\begin{gathered}
k_{1}=h \cdot f\left(t_{n}, y_{n}\right) \\
k_{2}=h \cdot f\left(t_{n}+\frac{h}{2}, y_{n}+\frac{k_{1}}{2}\right) \\
k_{3}=h \cdot f\left(t_{n}+\frac{h}{2}, y_{n}+\frac{k_{2}}{2}\right) \\
k_{4}=h \cdot f\left(t_{n}+h, y_{n}+k_{3}\right)
\end{gathered}
$$

with $h=t_{n+1}-t_{n}$
In the RKF method, the step size h is automatically varied so as to maintain a given level of precision on the estimated y values.

The implementation used in TPMath is a translation of a Fortran program by H. A. Watts and L. F. Shampine (http://www.csit.fsu.edu/ ${ }^{\sim}$ burkardt/f_src/rkf45/rkf45.f90). It is intermediate between the 4-th and 5 -th order Runge-Kutta methods, hence the name RKF45.

In order to use RKF45 you must:

1. Define the following variables (the names are optional):
```
var
    Neqn : Integer; { Number of equations }
    Y, Yp : PVector; { Functions and derivatives }
    Tstart, Tstop : Float; { Integration interval }
    Nstep : Integer; { Number of steps }
    StepSize : Float; { Step size }
    AbsErr, RelErr : Float; { Abs. and relative errors }
    Flag : Integer; { Error flag }
    T, Tout : Float; { Integration times }
    I : Integer; { Loop variable }
```

2. Define a procedure for computing the system of differential equations:
```
procedure DiffEq(T : Float; Y, Yp : PVector);
begin
    Yp^[1] := Y^[2];
    Yp^[2] := - Y^[1];
end;
```

(There is a special type TDiffEqs for such procedures)
3. Initialize variables, compute the step size and call RKF45 for each integration step (the initial values are given as examples, except for Flag which must be initialized to 1):

```
begin
    Neqn := 2;
    DimVector(Y, Neqn);
    DimVector(Yp, Neqn);
    Y^[1] := 1; { Initial conditions }
    Y^[2] := 0;
    Tstart := 0;
    Tstop := 2 * Pi;
    Nstep := 12;
    StepSize := (Tstop - Tstart) / Nstep;
    AbsErr := 1.0E-6;
    RelErr := 1.0E-6;
    Flag := 1;
    T := Tstart;
    for I := 1 to Nstep do
        begin
            Tout := T + StepSize;
            RKF45(DiffEq, Neqn, Y, Yp, T, Tout, RelErr, AbsErr, Flag);
            T := Tout;
        end;
end.
```

Upon return from RKF45:

- Y, Yp contain the values of the functions and their first derivatives at Tout
- Flag contains an error code:

```
* 2 : no error
* 3: too small RelErr value
* 4: too much function evaluations needed
* 5 : too small AbsErr value
* 6 : the requested accuracy could not be achieved
* 7 : the method was unable to solve the problem
* 8: invalid input parameters
```

If an error occurs, it should be possible in most cases to restart the computation, using the values returned by the subroutine in RelErr and AbsErr.

Note : RKF45 may be used to compute a definite integral:

$$
\int_{a}^{b} f(t) d t=F(b)-F(a)
$$

since this is equivalent to integrate the differential equation:

$$
F^{\prime}(t)=f(t)
$$

between a and b, with the initial condition specified by $f(a)$.

10.4 Demo programs

These programs are located in the demo\integral subdirectory.

- Program trap. pas applies the trapezoidal rule to a tabulated function.

The example function $f(x)=e^{-x}$ is tabulated for $x=0$ to 1 by steps of 0.1 . The integral is:

$$
\int_{0}^{1} e^{-x} d x=1-e^{-1} \approx 0.6321
$$

- Program gauss .pas demonstrates the Gauss-Legendre integration method.

The example function is $f(x)=x e^{-x}$. The integral is:

$$
\int_{0}^{x} f(t) d t=1-(x+1) e^{-x}
$$

- Program conv.pas computes the convolution of two functions by the Gauss-Legendre method.

The example functions are $f(x)=x e^{-x}$ and $g(x)=e^{-2 x}$. The convolution product is:

$$
(f * g)(x)=\int_{0}^{x} f(u) g(x-u) d u=e^{-2 x} \int_{0}^{x} u e^{u} d u=(x-1) e^{-x}-e^{-2 x}
$$

- Program test_rkf.pas solves 3 systems of differential equations by the RKF method:

1. A single nonlinear equation:

$$
y^{\prime}(t)=0.25 \cdot y(t) \cdot[1-0.05 \cdot y(t)]
$$

with the initial condition $y(0)=1$.
The analytic solution is:

$$
y(t)=\frac{20}{1+19 \exp (-0.25 t)}
$$

2. A system of two linear equations:

$$
\begin{gathered}
y_{1}^{\prime}(t)=y_{2}(t) \\
y_{2}^{\prime}(t)=-y_{1}(t)
\end{gathered}
$$

with the initial conditions $y_{1}(0)=1, y_{2}(0)=0$.
The analytic solution is:

$$
y_{1}(t)=\cos t \quad y_{2}(t)=-\sin t
$$

3. A system of 5 equations with one nonlinear:

$$
\begin{aligned}
& y_{1}^{\prime}(t)=y_{2}(t) \\
& y_{2}^{\prime}(t)=y_{3}(t)
\end{aligned}
$$

$$
\begin{gathered}
y_{3}^{\prime}(t)=y_{4}(t) \\
y_{4}^{\prime}(t)=y_{5}(t) \\
y_{5}^{\prime}(t)=45 \cdot y_{3}(t) \cdot y_{4}(t) \cdot y_{5}(t)-\frac{40\left[y_{4}(t)\right]^{3}}{9\left[y_{3}(t)\right]^{2}}
\end{gathered}
$$

with initial conditions $y_{i}(0)=1 \quad \forall i$
The program prints the numeric solution, and, if possible, the analytic one.

Chapter 11

Fast Fourier Transform

11.1 Introduction

Fourier transform is a mathematical method which allows to determine the frequency spectrum of a given signal (for instance a sound). The mathematical definition is the following :

$$
\begin{equation*}
y(f)=\int_{-\infty}^{\infty} x(t) \exp (2 \pi i f t) d t=\int_{-\infty}^{\infty} x(t)(\cos 2 \pi f t+i \sin 2 \pi f t) \tag{11.1}
\end{equation*}
$$

where $x(t)$ is the input signal (function of time), f the frequency, and i the complex number such that $i^{2}=-1 . y$ is the Fourier transform of x.

The input signal may have real or complex values. However, the Fourier transform is always a complex number. For each frequency f, the modulus of $y(f)$ represents the energy associated with this frequency. A plot of this modulus as a function of f gives the frequency spectrum of the input signal.

If the input signal is sampled as a sequence of n values $x_{0}, x_{1}, \ldots, x_{n-1}$, taken at constant time intervals, the Fourier transform is a sequence of complex number $y_{0}, y_{1}, \ldots, y_{n-1}$, such that:

$$
\begin{equation*}
y_{p}=\sum_{k=0}^{n-1} x_{k}\left[\cos \left(2 \pi \frac{k p}{n}\right)+i \sin \left(2 \pi \frac{k p}{n}\right)\right] \tag{11.2}
\end{equation*}
$$

This formula allows, in principle, to compute the transform y_{p} at any point. In practice, a faster algorithm called the Fast Fourier Transform (FFT) is used.

11.2 Programming

11.2.1 Array dimensioning

The FFT algorithm requires that the number of points n is a power of 2 . Moreover, the arrays must be dimensioned from 0 to $(n-1)$. For instance:

```
const
    NumSamples = 512; { Buffer size must be power of 2 }
    MaxIndex = NumSamples - 1; { Max. array index }
var
    InArray, OutArray : PCompVector;
begin
    DimVector(InArray, MaxIndex); { FFT input }
    DimVector(OutArray, MaxIndex); { FFT output }
```

The maximal value of n depends on the maximal array size MAX_COMP for an array of type Complex (see $\S 6.2$). The maximal value of p such that $n=2^{p}$ is given by the formula:
$\mathrm{p}:=\operatorname{Trunc}(\operatorname{Ln}(\mathrm{MAX}$ _COMP) $/ \operatorname{Ln}(2))$
For a 32 -bit compiler in double precision, $p=26$, thus allowing $2^{26}=$ 67108864 (64 mega) points.

11.2.2 FFT procedures

- Procedure FFT(NumSamples, InArray, OutArray) calculates the Fast Fourier Transform of the array of complex numbers InArray to produce the output complex numbers in OutArray.
- Procedure IFFT(NumSamples, InArray, OutArray) calculates the Inverse Fast Fourier Transform of the array of complex numbers represented by InArray to produce the output complex numbers in OutArray.

In other words, this procedure reconstitutes the input signal from its FFT.

- Procedure FFT_Integer(NumSamples, RealIn, ImagIn, OutArray) computes the Fast Fourier Transform on integer data. Here the real and imaginary parts of the data are stored in two integer arrays RealIn and ImagIn, while the results are stored in the complex array OutArray.
- Procedure FFT_Integer_Cleanup clears the memory after a call to FFT_Integer.
- Procedure CalcFrequency(NumSamples, FrequencyIndex, InArray, FT) calculates the complex frequency sample at a given index directly, by means of eq. 11.2. The answer is returned in the complex variable FT. Use this instead of FFT when you only need one or two frequency samples, not the whole spectrum. It is also useful for calculating the Fourier Transform of a number of data which is not an integer power of 2. For example, you could calculate the transform of 100 points instead of rounding up to 128 and padding the extra 28 array slots with zeroes.

11.3 Demo program

Program test_fft.pas, located in the demo\fourier subdirectory, shows how the Fourier transform may be used to filter a signal. The program plots several graphics and writes its results to the output file fftout.txt

The example is a 200 Hz sine wave contaminated by a 2000 Hz parasitic signal. The sampling frequency SamplingRate is 22050 Hz , the number of points NumSamples is $512\left(=2^{9}\right)$. These two numbers determine the time and frequency units:

```
DT := 1 / SamplingRate; { Time unit }
DF := SamplingRate / NumSamples; { Frequency unit }
```

so that the entry InArray^ [I] in the input array of procedure FFT corresponds to the signal value at time I * DT, and that the entry OutArray^ [I] in the output array corresponds to the Fourier transform at frequency I * DF.

The highest frequency which may be detected is equal to SamplingRate/2 and is called Nyquist's frequency. Hence, only the first half of array OutArray needs to be plotted (the second half contains symmetric values).

The program generates the input signal, plots it, then performs the FFT and plots the real and imaginary parts as a function of frequency. The plot
shows two peaks, corresponding to the 5 -th and 46 -th entries in OutArray (as seen from the file fftout.txt). The corresponding frequencies are:

$$
\begin{aligned}
5 \times \frac{22050}{512} & \approx 215 \mathrm{~Hz} \\
46 \times \frac{22050}{512} & \approx 1981 \mathrm{~Hz}
\end{aligned}
$$

The high peak corresponds to the main signal and the small peak to the parasite. To filter the last one, the program sets to zero all the FFT values corresponding to the frequencies higher than 1000 Hz , according to the following code:

```
FreqIndex := Trunc(1000.0 / DF);
MidIndex := NumSamples div 2;
SymIndex := NumSamples - FreqIndex;
for I := 0 to MaxIndex do
    begin
        if ((I > FreqIndex) and (I < MidIndex)) or
                ((I >= MidIndex) and (I < SymIndex)) then
                begin
                OutArray^[I].X := 0.0;
                OutArray^[I].Y := 0.0;
            end;
        end;
```

(note that the two halves of the output array, on either side of Nyquist's frequency, must be treated).

The program then calls procedure IFFT to compute the inverse Fourier transform of the modified data and plots the result, showing that the parasite has been removed, at the expense of a slight distorsion of the main signal.

In addition, the program performs a direct computation of the Fourier transform of a set of random complex values, using function CalcFrequency, and stores the results in the output file, for comparison with the FFT computed on the same data.

Chapter 12

Random numbers

This chapter describes the procedures and functions available to generate random numbers and perform stochastic simulation and optimization.

12.1 Random numbers

12.1.1 Introduction

TPMath provides three random number generators (RNG) :

- the 'Multiply With Carry' (MWC) generator of George Marsaglia.
- the 'Mersenne Twister' (MT) generator of Takuji Nishimura and Makoto Matsumoto (http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/ emt.html).
- the 'Universal Virtual Array Generator' (UVAG) contributed by Alex Hay.

The first method produces a sequence $\left\{I_{n}\right\}$ of integer numbers by means of the following recurrence relationships:

$$
\begin{aligned}
& I_{n+1}=\left(a I_{n}+c_{n}\right) \bmod b \\
& c_{n+1}=\left(a I_{n}+c_{n}\right) \operatorname{div} b
\end{aligned}
$$

where a is the multiplier, b the base (such that $b=2^{k}$), c_{n} the carry. One may start with $c_{0}=0$.

If a is properly chosen, the period of the generator is $a \times 2^{k-1}-1$. In our implementation, a 32 -bit integer is generated by concatenating two 16 -bit
integers, with $a_{1}=18000$ and $a_{2}=30903$. The period of the 32 -bit generator is therefore:

$$
\left(a_{1} \times 2^{15}-1\right) \times\left(a_{2} \times 2^{15}-1\right) \approx 6 \times 10^{17}
$$

The second method is more complex and slightly slower but it may be safer for intensive simulations since it has a much longer period (about 10^{6000}) and produces uncorrelated numbers in 623 dimensions.

We have verified that the three generators pass Marsaglia's DIEHARD battery of tests (http://stat.fsu.edu/pub/diehard/).

12.1.2 Generic functions

These functions may be used with any of the three generators.

Choice of generator

The generator is chosen by using one of the statements: SetRNG (RNG_MWC), SetRNG (RNG_MT) or SetRNG (RNG_UVAG). A default initialization is performed at the same time.

Initialization

The selected generator can be initialized with the statement InitGen(Seed) where Seed is a 32 -bit signed integer (LongInt).

Uniform random numbers

The following functions are available:

Function	Type	Bits	Interval
IRanGen	LongInt	32	$[-2147483648,2147483647]$
IRanGen31	LongInt	31	$[0,2147483647]$
RanGen1	Float	32	$[0,1]$
RanGen2	Float	32	$[0,1)$
RanGen3	Float	32	$(0,1)$
RanGen53	Float	53	$[0,1)$

12.1.3 Specific functions

The following functions are specific of a given generator:

- Subroutine InitMWC(Seed) initializes the MWC generator with a 32bit signed integer.

The default initialization performed by SetRNG corresponds to Seed $=$ 118105245.

- Function IRanMWC returns a 32-bit signed random integer from the MWC generator.
- Subroutine InitMT(Seed) initializes the MT generator with a 32-bit signed integer.
- Subroutine InitMTbyArray(InitKey, KeyLength) initializes the MT generator with an array InitKey [0. . (KeyLength - 1)] of 32-bit signed integers, with KeyLength <624.

The default initialization performed by SetRNG corresponds to the vector (\$123, \$234, \$345, \$456).

- Function IRanMT returns a 32-bit signed random integer from the MT generator.
- Subroutine InitUVAGbyString(KeyPhrase) initializes the UVAG generator with a string KeyPhrase.

The default initialization performed by SetRNG corresponds to the string 'abcd'.

- Subroutine InitUVAG (Seed) initializes the UVAG generator with a 32bit signed integer.
- Function IRanUVAG returns a 32-bit random signed integer from the UVAG generator.

12.1.4 Gaussian random numbers

These functions use the selected generator.

Normal distribution

- Function RanGaussStd generates a random number from the standard normal distribution.

The Box-Muller algorithm is used: if x_{1} and x_{2} are two uniform random numbers $\in(0,1)$, the two numbers y_{1} and y_{2} defined by:

$$
y_{1}=\sqrt{-2 \ln x_{1}} \cos 2 \pi x_{2} \quad y_{2}=\sqrt{-2 \ln x_{1}} \sin 2 \pi x_{2}
$$

follow the standard normal distribution.

- Function RanGauss (Mu, Sigma) generates a random number from the normal distribution with mean Mu and standard deviation Sigma.

Multinormal distribution

- Subroutine RanMult(M, L, Lb, Ub, X) generates a random vector X from a multidimensional normal distribution. $\mathrm{M}[\mathrm{Lb}$. . Ub] is the mean vector, $\mathrm{L}[\mathrm{Lb} . . \mathrm{Ub}, \mathrm{Lb} . \mathrm{Ub}]$ is the Cholesky factor of the variancecovariance matrix.
To simulate the n-dimensional multinormal distribution $\mathcal{N}(\mathbf{m}, \mathbf{V})$, where \mathbf{m} is the mean vector and \mathbf{V} the variance-covariance matrix, the following algorithm is used:

1. Let \mathbf{u} be a vector of n independent random numbers following the standard normal distribution,
2. Let \mathbf{L} be the lower triangular matrix resulting from the Cholesky factorization of matrix \mathbf{V},
3. Vector $\mathbf{x}=\mathbf{m}+\mathbf{L} \mathbf{u}$ follows the multinormal distribution $\mathcal{N}(\mathbf{m}, \mathbf{V})$.

- Subroutine RanMultIndep (M, S, Lb, Ub, X) generates a random number from an uncorrelated multidimensional distribution. Here S is simply the vector of standard deviations.

12.2 Markov Chain Monte Carlo

It is not always possible to simulate the distribution of a random variable with a direct algorithm such as the ones used for normal or multinormal distributions.

However, there exist iterative algorithms which generate a sequence of random variables for which the distribution tend towards the desired distribution, after starting from a standard distribution (e. g. uniform).

These random sequences are known as Markov chains and the iterative simulation method is therefore known as Markov chain Monte-Carlo (MCMC).

There are several MCMC variants. Here we will present the MetropolisHastings method.

Let \mathbf{X} a vector of random variables and $P(\mathbf{X})$ its probability density function (p.d.f.), which is to be simulated. The classical formulation of the Metropolis-Hastings algorithm is the following:

1. Choose an initial parameter vector \mathbf{X}_{0}
2. At iteration n :
(a) Draw a vector \mathbf{u} from the multinormal distribution $\mathcal{N}\left(\mathbf{X}_{n-1}, \mathbf{V}\right)$ where \mathbf{V} is the variance-covariance matrix
(b) If $r=P(\mathbf{u}) / P\left(\mathbf{X}_{n-1}\right)>1$, set $\mathbf{X}_{n}=\mathbf{u}$
otherwise if $\operatorname{Random}(0,1)<r$, set $\mathbf{X}_{n}=\mathbf{u}$
where $\operatorname{Random}(0,1)$ denotes a uniform random number in the interval $[0,1]$
3. Set $n=n+1$; goto 2

It is convenient to introduce a function $F(\mathbf{X})$ such that:

$$
\begin{equation*}
P(\mathbf{X})=C \exp \left[-\frac{F(\mathbf{X})}{T}\right] \quad \Longleftrightarrow \quad F(\mathbf{X})=-T \ln \frac{P(\mathbf{X})}{C} \tag{12.1}
\end{equation*}
$$

where C and T are positive constants. By analogy with statistical thermodynamics, T is known as the temperature.

From this equation, it may be seen that:

$$
r=\frac{P(\mathbf{u})}{P\left(\mathbf{X}_{n-1}\right)}=\exp \left(-\frac{\Delta F}{T}\right)
$$

where

$$
\Delta F=F(\mathbf{u})-F\left(\mathbf{X}_{n-1}\right)
$$

so, the Metropolis-Hastings algorithm may be rewritten as:

1. Choose an initial parameter vector \mathbf{X}_{0}
2. At iteration n :
(a) Draw a vector \mathbf{u} from the multinormal distribution $\mathcal{N}\left(\mathbf{X}_{n-1}, \mathbf{V}\right)$ Set $\Delta F=F(\mathbf{u})-F\left(\mathbf{X}_{n-1}\right)$
(b) if $\Delta F<0$, set $\mathbf{X}_{n}=\mathbf{u}$
otherwise if $\operatorname{Random}(0,1)<\exp (-\Delta F / 2)$, set $\mathbf{X}_{n}=\mathbf{u}$
3. Set $n=n+1$; goto 2

The initial variance-covariance matrix \mathbf{V} may be diagonal and its elements may be given large values, so that the initial distribution spans a relatively large space. When the iterations progress, the matrix converges to the variance-covariance matrix of the simulated distribution. It is often useful to perform several cycles of the algorithm, with the variance-covariance matrix being re-evaluated at the end of each cycle.

The vector \mathbf{X} corresponding to the lowest value of F is recorded; hence, the algorithm may be used as a stochastic optimization algorithm for minimizing the function F. The advantage of such an algorithm is that it can 'escape' from a local minimum (with a probability equal to $e^{-\Delta F / T}$) and has therefore more chances to reach the global minimum, unlike the deterministic optimizers studied in chapter 7 , for which only decreases of the function are acceptable. This application is however restricted by the fact that the function F must be linked to a p.d.f. by means of eq. (12.1).

This method is implemented in TPMath as:

```
Hastings(Func, T, X, V, Lb, Ub, Xmat, X_min, F_min)
```

The user must provide :

- the function Func to be minimized (defined as in paragraph 7.2, p. 50)
- the temperature T
- a starting vector X[Lb. .Ub]
- a starting variance-covariance matrix V [Lb. .Ub, Lb. .Ub].

On output, Hastings returns:

- the mean of the simulated distribution in X
- its variance-covariance matrix in V
- a matrix of simulated vectors in Xmat (one vector by line)
- the vector which minimizes the function in X.min
- the value of the function at the minimum in F-min (corresponds to the mode of the simulated distribution).

The behavior of the algorithm can be controlled with the following procedure:

```
InitMHParams(NCycles, MaxSim, SavedSim)
```

where:

- NCycles is the number of cycles (default $=10$)
- MaxSim is the maximum number of simulations at each cycle (default $=1000$)
- SavedSim is the number of simulated vectors which are saved in matrix Xmat. Only the last SavedSim vectors from the last cycle are saved. (default $=1000$)

The current values of these parameters can be retrieved with the procedure GetMHParams (NCycles, MaxSim, SavedSim).

After a call to Hastings, function MathErr will return one of the following codes:

- OptOk if no error occurred
- MatNotPD if the variance-covariance matrix is not positive definite

The random number generator is re-initialized at the start of the algorithm, so that a different result will be obtained for each call of the subroutine.

12.3 Simulated Annealing

Simulated annealing (SA) is an extension of the Metropolis-Hastings algorithm which tries to find the global minimum of any function (not necessarily a p.d.f.). Here the temperature starts from a high value and is progressively decreased as the algorithm progresses towards the minimum. The optimized parameters may then be refined with a local optimizer (chapter 7).

The implementations used in TPMath is a modification of a Fortran program written by B. Goffe (http://www.netlib.org/simann).

With the notations:
$F(\mathbf{X})$: function to be minimized
$\delta \mathbf{X} \quad: \quad$ range of \mathbf{X}
$F_{\min }:$ minimum of $F(\mathbf{X})$
T : temperature
$N_{T} \quad$: number of loops at constant T
$N_{S} \quad$: number of loops before adjustement of $\delta \mathbf{X}$
$R_{T} \quad$: temperature reduction factor
$N_{\text {acc }}$: number of accepted function increases
the algorithm may be described as follows:

- initialize $T, \mathbf{X}, \delta \mathbf{X}$
- repeat
- repeat N_{T} times
* repeat N_{S} times
for each parameter X_{i} :
\diamond pick a random value X_{i}^{\prime} in the interval $X_{i} \pm \delta X_{i}$
\diamond compute $F\left(X_{i}^{\prime}\right)$
\diamond accept or reject X_{i}^{\prime} according to Metropolis criterion
\diamond update $N_{\text {acc }}$
\diamond update $F_{\text {min }}$ if necessary
\star adjust step length δX_{i} so as to maintain an acceptance ratio of about 50%
- $T \leftarrow T \cdot R_{T}$
- until $N_{a c c}=0$ or $T<T_{\text {min }}$ or $\left|F_{\min }\right|<\epsilon$

The threshold values $T_{\min }$ and ϵ are fixed at 10^{-30} in our implementation.
At the beginning of the iterations, while we are away from the minimum, it makes sense to choose a high probability of acceptance, for instance $p=\frac{1}{2}$. It is then possible to perform a given number of random drawings and to compute the median M of the increases of function F, from which the initial temperature T_{0} is deduced by:

$$
p=\exp \left(-\frac{M}{T_{0}}\right)=\frac{1}{2} \quad \Rightarrow \quad T_{0}=\frac{M}{\ln 2}
$$

This procedure is implemented in the following subroutine:

```
SimAnn(Func, X, Xmin, Xmax, Lb, Ub, F_min)
```

where:

- Func is the function to be minimized (defined as in paragraph 7.2, p. 50)
- X[Lb. .Ub] is the parameter vector
- Xmin, Xmax are the bound values of X

The optimized parameters are returned in X and the corresponding function value in F-min

The user must provide reasonable values of Xmin and Xmax as well as a starting value for X . It is convenient to pick a random value in the range specified by Xmin and Xmax.

The behavior of the algorithm can be controlled with the following procedure:

```
InitSAParams(NT, NS, NCycles, RT)
```

where:

- NT, NS, RT correspond to the variables N_{T}, N_{S} and R_{T} in the algorithm. Default values are 5, 15 and 0.9 respectively.
- NCycles is the number of cycles (default $=1$).

In some difficult situations, it may be useful to perform several cycles of the algorithm. Each cycle will start with the optimized parameters X from the previous cycle and the temperature will be re-initialized (the bound values Xmin, Xmax remaining the same).

It is possible to record the progress of the iterations in a log file. This file is created with:

SA_CreateLogFile(LogFileName)

If the file is created, the following information will be stored:

- iteration number (each iteration corresponds to a single temperature)
- temperature value
- lowest function value obtained at this temperature
- number of function increases
- number of accepted increases

The file will be automatically closed upon return from SimAnn.

12.4 Genetic Algorithm

Genetic Algorithms (GA) are another class of stochastic optimization methods which try to mimick the law of natural selection in order to optimize a function $F(\mathbf{X})$.

There are several implementations of these algorithms. We use a method described by E. Perrin et al. (Recherche operationnelle / Operations Research, 1997, 31, 161-201). In this version, the vector \mathbf{X} is considered as the 'phenotype' of an 'individual' belonging to a 'population'. This phenotype is determined by two 'chromosomes' \mathbf{C}_{1} and \mathbf{C}_{2} and a vector of 'dominances' D such that:

$$
\begin{equation*}
X_{i}=D_{i} C_{1 i}+\left(1-D_{i}\right) C_{2 i} \quad\left(0<D_{i}<1\right) \tag{12.2}
\end{equation*}
$$

A population is defined by a matrix \mathbf{P}, such that each row of the matrix corresponds to a vector \mathbf{X}.

The population is initialized by taking vectors \mathbf{C}_{1} and \mathbf{C}_{2} at random in a given interval, vector \mathbf{D} at random in $(0,1)$ then applying eq. (12.2) to obtain the corresponding \mathbf{X} vectors.

At each step ('generation') of the algorithm:

1. The function values $F(\mathbf{X})$ are computed for each vector \mathbf{X} and the N_{S} individuals having the lowest function values (the 'survivors') are selected.
2. The remaining individuals are discarded and replaced by new ones, generated as follows:
(a) Two 'parents' are chosen at random in the selected sub-population and a 'child' is generated by:

- taking the vectors \mathbf{C}_{1} and \mathbf{C}_{2} at random from the parents
- generating a new vector \mathbf{D}
- computing the new \mathbf{X} according to eq. (12.2)

This process is repeated until the function value for the child is lower than the lowest function value of the two parents.
(b) The child is 'mutated' (i. e. its vectors are reinitialized at random) with a probability M_{R}
(c) The child is made 'homozygous' (i. e. its vectors \mathbf{C}_{1} and \mathbf{C}_{2} are made identical to its vector \mathbf{X}) with a probability H_{R}

This procedure is implemented in the following subroutine:

```
GenAlg(Func, X, Xmin, Xmax, Lb, Ub, F_min)
```

where the parameters have the same meaning as in SimAnn.
The behavior of the algorithm can be controlled with the following procedure:

```
InitGAParams(NP, NG, SR, MR, HR)
```

where:

- NP is the population size (default $=200$)
- $N G$ is the number of generations $($ default $=40)$
- SR is the survival rate (default $=0.5$)
- MR is the mutation rate $($ default $=0.1)$
- $H R$ is the probability of homozygosis $($ default $=0.5)$

A log file may also be created with:

```
GA_CreateLogFile(LogFileName)
```

The file will contain the iteration (generation) number and the optimized function value for this generation.

12.5 Demo programs

12.5.1 Test of MWC generator

Program testmwc.pas picks 20000 random numbers and displays the next 6 together with the correct values obtained with the default initialization.

12.5.2 Test of MT generator

Program testmt.pas writes 1000 integer numbers and 1000 real numbers from functions IRanGen and RanGen2, using the default initialization.

The output of this program should be similar to the contents of file mt.txt

12.5.3 Test of UVAG generator

Program testuvag.pas writes 1000 integer numbers from function IRanGen, using the default initialization. The output should be similar to the contents of file uvag.txt

12.5.4 File of random numbers

Program randfile.pas generates a binary file of 32 -bit random integers to be used as input for the DIEHARD program. The user must specify the number of random integers to be generated (default is $3,000,000$).

12.5.5 Gaussian random numbers

Program testnorm.pas picks a random sample of size N from a gaussian distribution with known mean and standard deviation (SD), estimates mean (m) and SD (s) from the sample, and computes a 95% confidence interval for the mean (i.e. an interval which has a probability of 0.95 to include the true mean), using the formula:

$$
\left[m-1.96 \frac{s}{\sqrt{N}}, m+1.96 \frac{s}{\sqrt{N}}\right]
$$

This formula is valid for $N>30$.

12.5.6 Multinormal distribution

Program ranmul.pas simulates a multi-normal distribution. The example is a 3 -dimensional distribution with the following means, standard deviations, and correlation matrix:

$$
\mathbf{m}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right] \quad \mathbf{s}=\left[\begin{array}{l}
0.1 \\
0.2 \\
0.3
\end{array}\right] \quad \mathbf{R}=\left[\begin{array}{rrr}
1 & 0.25 & 0.5 \\
0.25 & 1 & -0.25 \\
0.5 & -0.25 & 1
\end{array}\right]
$$

These data are stored in the input file ranmul.dat. The results of the simulation are stored in file ranmul. out

12.5.7 Multi-lognormal distribution

A vector \mathbf{x} is said to follow a multi-lognormal distribution $\mathcal{L N}(\mathbf{m}, \mathbf{V})$ if the vector \mathbf{x}° defined by:

$$
x_{i}^{\circ}=\ln \left(x_{i}\right)
$$

follows a multinormal distribution $\mathcal{N}\left(\mathbf{m}^{\circ}, \mathbf{V}^{\circ}\right)$
It may be shown that:

$$
\begin{gathered}
m_{i}^{\circ}=\ln \left(x_{i}\right)-V_{i i}^{\circ} \\
V_{i j}^{\circ}=\ln \left(1+\frac{V_{i j}}{m_{i} m_{j}}\right)
\end{gathered}
$$

So, if \mathbf{x}° is a random vector drawn from $\mathcal{N}\left(\mathbf{m}^{\circ}, \mathbf{V}^{\circ}\right), \mathbf{x}=\exp \left(\mathbf{x}^{\circ}\right)$ will be a vector from $\mathcal{L N}(\mathbf{m}, \mathbf{V})$

Program ranmull.pas simulates a multi-lognormal distribution. The example is a 2-dimensional distribution with the following means, standard deviations, and correlation coefficient:

$$
\mathbf{m}=\left[\begin{array}{r}
17.4178 \\
5.3173
\end{array}\right] \quad \mathbf{s}=\left[\begin{array}{l}
6.1259 \\
2.5158
\end{array}\right] \quad r=0.5672
$$

These data are stored in the input file ranmull.dat. The results of the simulation are stored in file ranmull. out

12.5.8 Markov Chain Monte-Carlo

Although MCMC methods are best suited when there is no direct simulation algorithm available, we will use the Metropolis-Hastings method to simulate the previous multinormal distribution (program testmcmc.pas).

First, we have to define the function to be optimized. The probability density for a n-dimensional normal distribution $\mathcal{N}(\mathbf{m}, \mathbf{V})$ is:

$$
P(\mathbf{X})=\frac{1}{\sqrt{(2 \pi)^{n}|\mathbf{V}|}} \exp \left[-\frac{1}{2}(\mathbf{X}-\mathbf{m})^{\top} \mathbf{V}^{-1}(\mathbf{X}-\mathbf{m})\right]
$$

So, according to eq. $12.1, T=2$ and:

$$
F(\mathbf{X})=(\mathbf{X}-\mathbf{m})^{\top} \mathbf{V}^{-1}(\mathbf{X}-\mathbf{m})
$$

Then, we have to define a starting vector $\mathbf{X}_{\text {sim }}$ and variance-covariance matrix $\mathbf{V}_{\text {sim }}$. In order to show that the algorithm can converge from a point chosen relatively far away from the optimum, we have chosen $\mathbf{X}_{\text {sim }}=3 \mathbf{m}$ and $\mathbf{V}_{\text {sim }}=\operatorname{diag}\left(10 V_{i i}\right)$.

With the default initializations (10 cycles of 1000 simulations each), the results of a typical run were:

$$
\hat{\mathbf{m}}=\left[\begin{array}{l}
1.01 \\
2.02 \\
3.01
\end{array}\right] \quad \hat{\mathbf{s}}=\left[\begin{array}{l}
0.099 \\
0.210 \\
0.320
\end{array}\right] \quad \hat{\mathbf{R}}=\left[\begin{array}{rrr}
1 & 0.286 & 0.467 \\
0.286 & 1 & -0.299 \\
0.467 & -0.299 & 1
\end{array}\right]
$$

12.5.9 Simulated Annealing

Program simann. pas uses simulated annealing to minimize a set of 10 notoriously difficult functions (most of them presenting multiple minima). Several successive runs of the program may be necessary to have all functions minimized (the random number generator being reinitialized at each call of the SimAnn subroutine).

12.5.10 Genetic Algorithm

Program genalg.pas optimizes the same functions than the previous program but with genetic algorithm. Here, too, it may be necessary to run the program several times.

Chapter 13

Statistics

This chapter describes some of the statistical functions available in TPMath. The specific problem of curve fitting will be considered in subsequent chapters.

13.1 Descriptive statistics

The following functions are available:

- Function Mean(X, Lb, Ub) returns the mean of sample X[Lb..Ub], defined by:

$$
m=\frac{1}{n} \sum_{i=1}^{n} x_{i}
$$

where n is the size of the sample.

- Function Median(X, Lb, Ub, Sorted) returns the median of X, defined as the number $x_{m e d}$ which has equal numbers of values above it and below it. If the array X has been sorted, the median is:

$$
\begin{array}{ll}
x_{\text {med }}=x_{\frac{n+1}{2}} & (n \text { odd }) \\
x_{\text {med }}=\frac{1}{2}\left(x_{\frac{n}{2}}+x_{\frac{n}{2}+1}\right) & (n \text { even })
\end{array}
$$

The parameter Sorted indicates if array X has been sorted before calling function Median. If not, it will be sorted within the function (the array X will therefore be modified).

Sorting (in ascending order) is performed by calling a procedure QSort (X, Lb, Ub) which implements the 'Quick Sort' algorithm. Of course, this procedure may be called outside function Median. There is also a DQSort for sorting in descending order.

- Function $\operatorname{StDev}(\mathrm{X}, \mathrm{Lb}, \mathrm{Ub}, \mathrm{M})$ returns the estimated standard deviation of the population from which sample X is extracted, M being the mean of the sample. This standard deviation is defined by:

$$
s=\sqrt{\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-m\right)^{2}}
$$

These estimated standard deviations are used in statistical tests.

- Function $\operatorname{StDevP}(X, L b, U b, M)$ returns the standard deviation of X, considered as a whole population. This standard deviation is defined by:

$$
\sigma=\sqrt{\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-m\right)^{2}}
$$

- Function Correl (X, Y, Lb, Ub) returns the correlation coefficient between X and Y :

$$
r=\frac{\sum_{i=1}^{n}\left(x_{i}-m_{x}\right)\left(y_{i}-m_{y}\right)}{\sqrt{\sum_{i=1}^{n}\left(x_{i}-m_{x}\right) \sum_{i=1}^{n}\left(y_{i}-m_{y}\right)}}
$$

where m_{x} and m_{y} denote the means of the samples.

- Function Skewness (X, Lb, Ub, M, Sigma) returns the skewness of X, with mean M and standard deviation Sigma. This parameter is defined by:

$$
\gamma_{1}=\frac{1}{n \sigma^{3}} \sum_{i=1}^{n}\left(x_{i}-m\right)^{3}
$$

Skewness is an indicator of the symmetric nature of the distribution. It is zero for a symmetric distribution (e. g. Gaussian), and positive (resp. negative) for an assymetric distribution with a tail extending towards positive (resp. negative) x values.

- Function Kurtosis (X, Lb, Ub, M, Sigma) returns the kurtosis of X, with mean M and standard deviation Sigma. This parameter is defined by:

$$
\gamma_{2}=\frac{1}{n \sigma^{4}} \sum_{i=1}^{n}\left(x_{i}-m\right)^{4}-3
$$

Kurtosis is an indicator of the flatness of the distribution. It is zero for a Gaussian distribution, and positive (resp. negative) if the distribution is more (resp. less) 'sharp' than the Gaussian.

13.2 Comparison of means

13.2.1 Student's test for independent samples

We have 2 independent samples with sizes n_{1}, n_{2}, means m_{1}, m_{2}, standard deviations s_{1}, s_{2}. It is assumed that the samples are taken from gaussian populations with means μ_{1}, μ_{2} and equal variances. The sample means are compared by computing the t-statistic:

$$
t=\frac{m_{1}-m_{2}}{s \sqrt{1 / n_{1}+1 / n_{2}}}
$$

where s^{2} is the estimation of the common variance:

$$
s^{2}=\frac{\left(n_{1}-1\right) s_{1}^{2}+\left(n_{2}-1\right) s_{2}^{2}}{n_{1}+n_{2}-2}
$$

If $n_{1} \geq 30$ and $n_{2} \geq 30$, the conditions of normality and equal variances are no longer required and the formula becomes:

$$
t=\frac{m_{1}-m_{2}}{\sqrt{s_{1}^{2} / n_{1}+s_{2}^{2} / n_{2}}}
$$

The null hypothesis is $\left(H_{0}\right): \mu_{1}=\mu_{2}$
The alternative hypothesis $\left(H_{1}\right)$ depends on the test:

One-tailed test	$\left(H_{1}\right): \mu_{1}>\mu_{2}$	\Rightarrow reject $\left(H_{0}\right)$ if $t>t_{1-\alpha}$
	$\left(H_{1}\right): \mu_{1}<\mu_{2}$	$\Rightarrow \operatorname{reject}\left(H_{0}\right)$ if $t<t_{1-\alpha}$
Two-tailed test	$\left(H_{1}\right): \mu_{1} \neq \mu_{2}$	\Rightarrow reject $\left(H_{0}\right)$ if $\|t\|>t_{1-\alpha / 2}$

where $t_{1-\alpha}$ is the value of the Student variable such that the cumulative probability function $\Phi_{\nu}(t)=1-\alpha$ at $\nu=n_{1}+n_{2}-2$ d.o.f. (cf. chap. 5).

If H_{0} is rejected, the difference of the means is considered significant at risk α

This test is implemented in the following procedure :
StudIndep(N1, N2, M1, M2, S1, S2, T, DoF)
where ($\mathrm{N} 1, \mathrm{~N} 2$) are the sizes of the samples, (M1, M2) their means and (S1, S2) the estimated standard deviations (computed with StDev). The procedure returns Student's t in T and the number of degrees of freedom in DoF.

13.2.2 Student's test for paired samples

If the samples are paired (e. g. the same patients before and after a treatment), the t-statistic becomes:

$$
t=\frac{m_{d}}{s_{d}} \sqrt{n}
$$

where m_{d} and s_{d} are, respectively, the mean and standard deviations of the differences $\left(x_{1 i}-x_{2 i}\right)$ between the paired values in the two samples, and n is the common size of the samples.

Apart from this, the test is carried out as with the independent case, with $(n-1)$ d. o. f.

This test is implemented in the following procedure :

```
StudPaired(X, Y, Lb, Ub, T, DoF)
```

where $\mathrm{X}[\mathrm{Lb} . \mathrm{Ub}], \mathrm{Y}[\mathrm{Lb} . \mathrm{Ub}]$ are the two samples. The procedure returns Student's t in T and the number of degrees of freedom in DoF.

After a call to this procedure, function MathErr returns one of the following error codes:

- FOk (0) if no error occurred
- FSing (-2) if $s_{d}=0$
- MatErrDim (-3) if X and Y have different sizes.

13.2.3 One-way analysis of variance (ANOVA)

We have k independent samples with sizes n_{i}, means m_{i}, standard deviations s_{i}. It is assumed that the samples are taken from gaussian populations with means μ_{i} and equal variances. The goal is to compare the k means.

The following equation holds:

$$
\begin{equation*}
S S_{t}=S S_{f}+S S_{r} \tag{13.1}
\end{equation*}
$$

with:

$$
S S_{t}=\sum_{i=1}^{k} \sum_{j=1}^{n_{i}}\left(x_{i j}-\bar{x}\right)^{2} \quad S S_{f}=\sum_{i=1}^{k} n_{i}\left(m_{i}-\bar{x}\right)^{2} \quad S S_{r}=\sum_{i=1}^{k}\left(n_{i}-1\right) s_{i}^{2}
$$

- \bar{x} is the global mean:

$$
\bar{x}=\frac{1}{n} \sum_{i=1}^{k} n_{i} m_{i} \quad n=\sum_{i=1}^{k} n_{i}
$$

- $S S_{t}$ is the total sum of squares; it has $(n-1)$ degrees of freedom
- $S S_{f}$ is the factorial sum of squares; it has $(k-1)$ degrees of freedom.
- $S S_{r}$ is the residual sum of squares; it has $(n-k)$ degrees of freedom

Note that the degrees of freedom (d.o.f.) are additive, just like the sums of squares:

$$
(n-1)=(k-1)+(n-k)
$$

The variances are defined by dividing each sum of squares by the corresponding number of d.o.f.

$$
V_{t}=\frac{S S_{t}}{n-1} \quad V_{f}=\frac{S S_{f}}{k-1} \quad V_{r}=\frac{S S_{r}}{n-k}
$$

These are the total, factorial, and residual variances, respectively. Note that the variances, unlike the sum of squares, are not additive!

The comparison of means is performed by computing the F-statistic:

$$
F=\frac{V_{f}}{V_{r}}
$$

The null hypothesis is $\left(H_{0}\right): \mu_{1}=\mu_{2}=\cdots=\mu_{k}$
$\left(H_{0}\right)$ is rejected if $F>F_{1-\alpha}$ where $F_{1-\alpha}$ is the value of the Fisher-Snedecor variable such that the cumulative probability function $\Phi_{\nu_{1}, \nu_{2}}(F)=1-\alpha$ at $\nu_{1}=k-1$ and $\nu_{2}=n-k$ d.o.f. (cf. chap. 5).

This algorithm is implemented in the following procedure :

```
AnOVa1(Ns, N, M, S, V_f, V_r, F, DoF_f, DoF_r)
```

where Ns is the number of samples, $\mathrm{N}[1 . \mathrm{Ns}$] are the sizes of the samples, M[1..Ns] their means and S[1..Ns] the estimated standard deviations (computed with StDev).

The procedure returns the factorial and residual variances in V_f and V_r, their ratio in F and their numbers of d. o. f. in DoF_f and DoF_r.

After a call to this procedure, function MathErr returns one of the following error codes:

- FOk (0) if no error occurred
- FSing (-2) if $n-k \leq 0$
- MatErrDim (-3) if the arrays have non-compatible dimensions

13.2.4 Two-way analysis of variance

We assume here that the means of the samples depend on two factors A and B , such that the sample corresponding to the i-th level of A and the j-th level of B has mean $m_{i j}$ and standard deviation $s_{i j}$.

It is also assumed that all samples are taken from gaussian populations with equal variances, and that they have the same size n.

The previous equations become:

$$
\begin{gathered}
\bar{x}=\frac{1}{n p q} \sum_{i=1}^{p} \sum_{j=1}^{q} n m_{i j} \\
S S_{t}=\sum_{i=1}^{p} \sum_{j=1}^{q}\left(x_{i j}-\bar{x}\right)^{2} \quad S S_{f}=\sum_{i=1}^{p} \sum_{j=1}^{q} n\left(m_{i j}-\bar{x}\right)^{2} \quad S S_{r}=\sum_{i=1}^{p} \sum_{j=1}^{q}(n-1) s_{i j}^{2}
\end{gathered}
$$

with $n p q-1, p q-1$, and $(n-1) p q$ d.o.f., respectively.
In addition, the factorial sum of squares can be splitted into three terms:

$$
\begin{gathered}
S S_{A}=q n \sum_{i=1}^{p}\left(m_{i .}-\bar{x}\right)^{2} \quad ; \quad(p-1) \text { d.o.f. } \\
S S_{B}=p n \sum_{j=1}^{q}\left(m_{. j}-\bar{x}\right)^{2} \quad ; \quad(q-1) \text { d.o.f. } \\
S S_{A B}=n \sum_{i=1}^{p} \sum_{j=1}^{q}\left(m_{i j}-m_{i .}-m_{. j}+\bar{x}\right)^{2} \quad ; \quad(p-1)(q-1) \text { d.o.f. }
\end{gathered}
$$

where $m_{i .}$ and $m_{. j}$ are the conditional means:

$$
m_{i .}=\frac{1}{q} \sum_{j=1}^{q} m_{i j} \quad m_{\cdot j}=\frac{1}{p} \sum_{i=1}^{p} m_{i j}
$$

that is, the means of the lines and columns of matrix $\left[m_{i j}\right]$
These sums of squares represent, respectively, the influence of factor A, the influence of factor B, and the interaction of the two factors (that is, the fact that the influence of one factor depends on the level of the other factor).

The variances are computed as before:

$$
V_{A}=\frac{S S_{A}}{p-1} \quad V_{B}=\frac{S S_{B}}{q-1} \quad V_{A B}=\frac{S S_{A B}}{(p-1)(q-1)} \quad V_{r}=\frac{S S_{r}}{(n-1) p q}
$$

There are three null hypotheses:
$\left(H_{0}\right)_{A}$: The populations means do not depend on factor A
$\left(H_{0}\right)_{B} \quad$: The populations means do not depend on factor B
$\left(H_{0}\right)_{A B}$: There is no interaction between the two factors
Each hypothesis is tested by computing the corresponding F-statistic (for instance, $F_{A}=V_{A} / V_{r}$ for testing $\left.\left(H_{0}\right)_{A}\right)$ and comparing with the critical value $F_{1-\alpha}$

Special case: $\mathbf{n}=1$. If there is only one observation per sample, the residual variance is zero. The null hypotheses $\left(H_{0}\right)_{A}$ and $\left(H_{0}\right)_{B}$ are tested with $F_{A}=V_{A} / V_{A B}$ and $F_{B}=V_{B} / V_{A B}$. The interaction of the factors cannot be tested.

This algorithm is implemented in the following procedure :

```
AnOVa2(NA, NB, Nobs, M, S, V, F, DoF)
```

where NA and NB are the number of levels of the factors A and B, Nobs the common number of observations, N the common size of the samples, $\mathrm{M}[1 . . \mathrm{NA}, 1 . . \mathrm{NB}]$ the matrix of means and $\mathrm{S}[1 . . \mathrm{NA}, 1 . . \mathrm{NB}]$ the matrix of standard deviations, such that the rows correspond to factor A and the columns to factor B.

The procedure returns the variances in vector $\mathrm{V}[1 . .4]=\left[V_{A}, V_{B}, V_{A B}, V_{r}\right]$, the variance ratios in $\mathrm{F}[1 . .3]=\left[F_{A}, F_{B}, F_{A B}\right]$, and the degrees of freedom in DoF[1..4]. If $N=1$, the last element of each vector disappears.

After a call to this procedure, function MathErr returns one of the following error codes:

- FOk (0) if no error occurred
- MatErrDim (-3) if the arrays have non-compatible dimensions.

13.3 Comparison of variances

13.3.1 Comparison of two variances

We have 2 independent samples with sizes n_{1}, n_{2}, standard deviations s_{1}, s_{2}. It is assumed that the samples are taken from gaussian populations with variances $\sigma_{1}^{2}, \sigma_{2}^{2}$.

Snedecor's test uses the following statistic:

$$
F=\frac{\max \left(s_{1}^{2}, s_{2}^{2}\right)}{\min \left(s_{1}^{2}, s_{2}^{2}\right)}
$$

which is compared with the critical value $F_{1-\alpha / 2}$ (two-tailed test).
This test is implemented in the following procedure :

```
Snedecor(N1, N2, S1, S2, F, DoF1, DoF2)
```

where ($\mathrm{N} 1, \mathrm{~N} 2$) are the sizes of the samples and (S1, S2) the estimated standard deviations. The procedure returns the variance ratio in F and the numbers of d. o. f. in DoF1 and DoF2.

13.3.2 Comparison of several variances

We have k independent samples with sizes n_{i}, standard deviations s_{i}. It is assumed that the samples are taken from gaussian populations with variances σ_{i}^{2}. The goal is to compare the k variances.

Bartlett's test uses the following statistic:

$$
\begin{aligned}
B & =\frac{1}{\lambda}\left[(n-k) \ln V_{r}-\sum_{i=1}^{k}\left(n_{i}-1\right) \ln s_{i}^{2}\right] \\
\lambda & =1+\frac{1}{3(k-1)}\left[\sum_{i=1}^{k} \frac{1}{n_{i}-1}-\frac{1}{n-k}\right]
\end{aligned}
$$

where $n=\sum n_{i}$ and V_{r} is the residual variance, as defined previously (§ 13.2.3).

The null hypothesis is:

$$
\left(H_{0}\right): \sigma_{1}^{2}=\sigma_{2}^{2}=\cdots=\sigma_{k}^{2}
$$

Under $\left(H_{0}\right), B$ follows approximately the χ^{2} distribution with $(k-1)$ d. o. f. The hypothesis is tested by comparing B with the value $\chi_{1-\alpha}^{2}$ such that the cumulative probability function $\Phi_{\nu}\left(\chi^{2}\right)=1-\alpha$ at $\nu=k-1$ d.o.f. (cf. chap. 5).

This test is implemented in the following procedure :

```
Bartlett(Ns, N, S, Khi2, DoF)
```

where Ns is the number of samples, $\mathrm{N}[1 . . \mathrm{Ns}$] are the sizes of the samples and $\mathrm{S}[1 . \mathrm{Ns}$] the estimated standard deviations. The procedure returns Bartlett's statistic in Khi2 and the number of d. o. f. in DoF. The error codes are the same than for AnOVa1

13.4 Non-parametric tests

Non-parametric tests are used when the assumptions needed by the classical tests (gaussian populations with equal variances) are not fulfilled. They are also called rank tests because they work with the ranks of the values, rather than the values themselves.

13.4.1 Mann-Whitney test

This test compares the means of two independent samples. It is the nonparametric analog of Student's test for independent samples.

The test uses the following statistic:

$$
U=\min \left(u_{1}, u_{2}\right)
$$

with:

$$
u_{1}=n_{1} n_{2}+\frac{n_{1}\left(n_{1}+1\right)}{2}-r_{1} \quad ; \quad u_{2}=n_{1} n_{2}+\frac{n_{2}\left(n_{2}+1\right)}{2}-r_{2}
$$

where $\left(n_{1}, n_{2}\right)$ are the sample sizes, $\left(r_{1}, r_{2}\right)$ the sums of the ranks of the two samples.

If $n_{1} \geq 20$ and $n_{2} \geq 20$, the variable:

$$
\epsilon=\frac{U-\mu}{\sigma}
$$

with:

$$
\mu=\frac{n_{1} n_{2}}{2} \quad ; \quad \sigma=\sqrt{\frac{n_{1} n_{2}\left(n_{1}+n_{2}+1\right)}{12}}
$$

follows the standard normal distribution under $\left(H_{0}\right)$.
This test is implemented in the following procedure :

```
Mann_Whitney(N1, N2, X1, X2, U, Eps)
```

where N1 and N2 are the sample sizes, X1[1..N1] and X2[1..N2] are the two samples. The procedure returns Mann-Whitney's statistic in U and the associated normal variable in Eps.

13.4.2 Wilcoxon test

This test compares the means of two paired samples. It is the non-parametric analog of Student's test for paired samples.

The test uses the following statistic:

$$
T=\min \left(T_{+}, T_{-}\right)
$$

where T_{+}and T_{-}are the sums of the ranks of the positive and negative differences between the values of the two samples.

If the sample size is $N>25$, the variable:

$$
\epsilon=\frac{T-\mu}{\sigma}
$$

with:

$$
\mu=\frac{N(N+1)}{4} \quad ; \quad \sigma=\sqrt{\frac{N(N+1)(2 N+1)}{24}}
$$

follows the standard normal distribution under $\left(H_{0}\right)$.
This test is implemented in the following procedure :
Wilcoxon(X, Y, Lb, Ub, Ndiff, T, Eps)
where $\mathrm{X}[\mathrm{Lb} . \mathrm{Ub}]$ and $\mathrm{Y}[\mathrm{Lb} . \mathrm{Ub}]$ are the two samples. The procedure returns the number of non-zero differences in Ndiff, Wilcoxon's statistic in T and the associated normal variable in Eps.

13.4.3 Kruskal-Wallis test

This test compares the means of several independent samples. It is the nonparametric analog of one-way ANOVA.

The test uses the following statistic:

$$
H=\frac{12}{n(n+1)} \sum_{i=1}^{k} \frac{r_{i}^{2}}{n_{i}}-3(n+1)
$$

where k is the number of samples, n_{i} the size of sample i, r_{i} the sum of the ranks for sample i and n the total size.

If $n_{i}>5 \forall i, H$ follows the χ^{2} distribution with $k-1$ d.o.f.
This test is implemented in the following procedure :

```
Kruskal_Wallis(Ns, N, X, H, DoF)
```

where Ns is the number of samples, $\mathrm{N}[1 . \mathrm{Ns}$] is the vector of sizes and X the sample matrix (with the samples as columns). The procedure returns the Kruskal-Wallis statistic in H and the number of d. o. f. in DoF.

13.5 Statistical distribution

A statistical distribution is generated by binning data into a set of statistical classes $\left.] x_{i}, x_{i+1}\right]$. Each class is characterized by the following parameters:

- its bounds x_{i}, x_{i+1}
- the number of values n_{i} contained in the class
- the frequency $f_{i}=n_{i} / N$ where N is the total number of values
- the density $d_{i}=f_{i} /\left(x_{i+1}-x_{i}\right)$

This structure is implemented in TPMath as:

```
type StatClass = record { Statistical class }
    Inf : Float; { Lower bound }
    Sup : Float; { Upper bound }
    N : Integer; { Number of values }
    F : Float; { Frequency }
    D : Float; { Density }
end;
```

A distribution is generated with the following procedure:

```
Distrib(X, Lb, Ub, A, B, H, C)
```

where $\mathrm{X}[\mathrm{Lb} . \mathrm{Ub}]$ is the original set of values, A and B the lower and upper bounds of the distribution and H the common width of the classes, according to the following scheme:

The distribution is returned in C which is an array of type StatClass.

13.6 Comparison of distributions

13.6.1 Observed and theoretical distributions

An observed distribution may be compared to a theoretical one by using the following statistics:

- Pearson's χ^{2} :

$$
\chi^{2}=\sum_{i=1}^{p} \frac{\left(O_{i}-C_{i}\right)^{2}}{C_{i}}
$$

- Woolf's G :

$$
G=2 \sum_{i=1}^{p} O_{i} \ln \frac{O_{i}}{C_{i}}
$$

where O_{i} and C_{i} denote the observed and theoretical numbers of values in class i, and p the number of classes.

The null hypothesis is $\left(H_{0}\right)$: the observed distribution conforms to the theoretical one (it is a test for conformity)

Under $\left(H_{0}\right)$, both statistics follow the χ^{2} distribution with $\left(p-1-N_{e}\right)$ d. o. f., where N_{e} is the number of parameters which have been estimated to compute the C_{i} values (e. g. $N_{e}=2$ if the mean and standard deviation of the distribution have been estimated).
$\left(H_{0}\right)$ is rejected if the chosen statistic is higher than the critical value $\chi_{1-\alpha}^{2}$ for the chosen risk α.

Pearson's statistic is an approximation of Woolf's statistic. It is usually recommended to use it only if $C_{i} \geq 5 \forall i$.

These procedures are implemented as:

```
Khi2_Conform(N_cls, N_estim, Obs, Calc, Khi2, DoF)
Woolf_Conform(N_cls, N_estim, Obs, Calc, G, DoF)
```

where N_cls denotes the number of classes, N_estim the number of estimated parameters, Obs[1..N_cls] and Calc[1..N_cls] the observed and theoretical distributions. The statistic is returned in Khi2 or G and the number of d. o. f. in DoF.

13.6.2 Several observed distributions

To compare several observed distributions, we can group them into a contingency table \mathbf{O} such that $O_{i j}$ denotes the number of values for class i in the j-th distribution.

The Pearson and Woolf statistics may then be computed as:

$$
\begin{aligned}
\chi^{2} & =\sum_{i=1}^{p} \sum_{j=1}^{q} \frac{\left(O_{i j}-C_{i j}\right)^{2}}{C_{i j}} \\
G & =2 \sum_{i=1}^{p} \sum_{j=1}^{q} O_{i j} \ln \frac{O_{i j}}{C_{i j}}
\end{aligned}
$$

where p the number of classes, q the number of distributions, and $C_{i j}$ the theoretical value of $O_{i j}$, computed as:

$$
C_{i j}=\frac{N_{i .} N_{. j}}{N}
$$

where $N_{i .}$ is the sum of terms in line $i, N_{. j}$ is the sum of terms in column j, and N the global sum of all terms in the matrix $\left(N=\sum_{i} N_{i .}=\sum_{j} N_{. j}\right)$.

The null hypothesis is $\left(H_{0}\right)$: the observed distributions come from the same population (it is a test for homogeneity or independence).

Under $\left(H_{0}\right)$, both statistics follow the χ^{2} distribution with $(p-1)(q-1)$ d. o. f.

These procedures are implemented as:

```
Khi2_Indep(N_lin, N_col, Obs, Khi2, DoF)
Woolf_Indep(N_lin, N_col, Obs, G, DoF)
```

where N_{-}lin and N _col are the numbers of lines and columns (i. e. p and q), and Obs[1..N_lin, 1..N_col] is the matrix of observed distributions. The statistic is returned in Khi2 or G and the number of d. o. f. in DoF.

13.7 Demo programs

These programs are located in the demo\stat subdirectory of the TPMath directory.

13.7.1 Descriptive statistics, comparison of means and variances

Program stat.pas performs a statistical analysis of hemoglobin concentrations in two samples of 30 men and 30 women. The computed parameters are the mean, standard deviation, skewness and kurtosis. The means are compared by Student's test (two-tailed) and Mann-Whitney's test, and the variances are compared by Snedecor's test.

13.7.2 Student's test for paired samples

Program student.pas compares the means of two paired samples, using Student's and Wilcoxon's two-tailed tests.

13.7.3 One-way analysis of variance

Program av1.pas compares the means of 5 independent samples, each with 12 observations, using one-way ANOVA and the Kruskal-Wallis test. In addition, the variances of the samples are compared with Bartlett's test.

13.7.4 Two-way analysis of variance

- Program av2.pas compares the means of 4 samples, depending on two factors, using two-way ANOVA. Each sample contains 12 observations.
- Program av2a.pas performs two-way ANOVA with one observation per sample.

13.7.5 Statistical distribution

Program histo.pas uses the hemoglobin data from program stat.bas to generate a statistical distribution.

The first step determines a suitable range for the data. This is done by calling procedure Interval :

```
Interval(X^[1], X^[N], 5, 10, XMin, XMax, XStep);
```

The arguments 5 and 10 represent the minimal and maximal number of classes which is desired.

The second step generates the distribution, using the ranges determined in the previous step:

```
Ncls := Round((Xmax - Xmin) / XStep);
DimStatClassVector(C, Ncls);
Distrib(X, 1, N, Xmin, Xmax, XStep, C);
```

This distribution is then compared with the normal distribution, using both χ^{2} and Woolf's tests. The theoretical C_{i} values are computed from the cumulative probability function for the normal distribution having the same mean and standard deviation than the observed distribution.

The program plots an histogram of the observed distribution, together with the curve corresponding to the normal distribution. This curve is generated from the probability density function:

```
function PltFunc(X : Float) : Float;
begin
    PltFunc := DNorm((X - M) / S) / S;
end;
```

where M, S are the mean and standard deviation of the observed distribution, and DNorm is the probability density of the standard normal distribution (see chapter 5). Note that the histogram is constructed with the class densities as ordinates, so that a comparison with the plotted curve can be made.

13.7.6 Comparison of distributions

Program khi2. pas performs both χ^{2} and Woolf's tests, first to compare an observed distribution with a theoretical one, and then to analyse a contingency table.

Chapter 14

Linear regression

This chapter describes the routines available in TPMath for fitting a straight line by linear regression. Other types of curve fitting will be described in subsequent chapters.

14.1 Straight line fit

The problem is to determine the equation of the line which comes closest to a set of points.

The model is defined by the equation:

$$
y=a+b x
$$

- x is the independent (or 'explicative') variable
- y is the dependent (or 'explained') variable
- a and b are the model parameters

Assume that the n points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \cdots\left(x_{n}, y_{n}\right)$ are perfectly lined, so that each of them verifies the equation of the straight line:

$$
\begin{gathered}
y_{1}=a+b x_{1} \\
y_{2}=a+b x_{2} \\
\ldots \ldots \cdots \\
y_{n}=a+b x_{n}
\end{gathered}
$$

Or in matrix form:

$$
\mathbf{y}=\mathbf{X} \beta \quad \Longleftrightarrow \quad \mathbf{y}-\mathbf{X} \beta=\mathbf{0}
$$

where:

$$
\mathbf{y}=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\cdots \\
y_{n}
\end{array}\right] \quad \mathbf{X}=\left[\begin{array}{cc}
1 & x_{1} \\
1 & x_{2} \\
\cdots & \cdots \\
1 & x_{n}
\end{array}\right] \quad \beta=\left[\begin{array}{c}
a \\
b
\end{array}\right]
$$

In the general case, the points are not exactly lined, so that:

$$
\mathbf{y}-\mathbf{X} \beta=\mathbf{r}
$$

where \mathbf{r} is the vector of residuals:

$$
\mathbf{r}=\left[r_{1}, r_{2} \cdots r_{n}\right]^{\top}=\mathbf{y}-\hat{\mathbf{y}}
$$

where $\hat{\mathbf{y}}=\mathbf{X} \beta$
It is possible to compute β so that $\|\mathbf{r}\|$ is minimal (least squares criterion).

$$
\|\mathbf{r}\|^{2}=\mathbf{r}^{\top} \mathbf{r}=r_{1}^{2}+r_{2}^{2}+\cdots+r_{n}^{2}=\sum_{i=1}^{n} r_{i}^{2}=\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}=S S_{r}
$$

where $\hat{y}_{i}=a+b x_{i}$ and $S S_{r}$ is the sum of squared residuals.
Several methods allow the determination of β under the least squares criterion. The QR and SVD algorithms have been described previously. Here we will study the method of normal equations.

It may be shown that β is the solution of the system:

$$
\mathbf{A} \beta=\mathbf{c}
$$

with:

$$
\mathbf{A}=\mathbf{X}^{\top} \mathbf{X} \quad \mathbf{c}=\mathbf{X}^{\top} \mathbf{y}
$$

so:

$$
\beta=\mathbf{A}^{-1} \mathbf{c}=\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1}\left(\mathbf{X}^{\top} \mathbf{y}\right)
$$

The matrices may be expressed in terms of statistical sums:

$$
\begin{gathered}
\mathbf{A}=\left[\begin{array}{cc}
n & \Sigma x_{i} \\
\Sigma x_{i} & \Sigma x_{i}^{2}
\end{array}\right] \quad \mathbf{c}=\left[\begin{array}{c}
\Sigma y_{i} \\
\Sigma x_{i} y_{i}
\end{array}\right] \\
\mathbf{A}^{-\mathbf{1}}=\frac{1}{n \Sigma x_{i}^{2}-\left(\Sigma x_{i}\right)^{2}}\left[\begin{array}{cc}
\Sigma x_{i}^{2} & -\Sigma x_{i} \\
-\Sigma x_{i} & n
\end{array}\right] \\
\beta=\frac{1}{n \Sigma x_{i}^{2}-\left(\Sigma x_{i}\right)^{2}}\left[\begin{array}{c}
\Sigma x_{i}^{2} \Sigma y_{i}-\Sigma x_{i} \Sigma x_{i} y_{i} \\
\Sigma x_{i} \Sigma y_{i}+n \Sigma x_{i} y_{i}
\end{array}\right]
\end{gathered}
$$

14.2 Analysis of variance

The following equation holds:

$$
\begin{equation*}
S S_{t}=S S_{e}+S S_{r} \tag{14.1}
\end{equation*}
$$

with:

$$
S S_{t}=\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2} \quad S S_{e}=\sum_{i=1}^{n}\left(\hat{y}_{i}-\bar{y}\right)^{2} \quad S S_{r}=\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}
$$

- \bar{y} is the mean of the y values:

$$
\bar{y}=\frac{1}{n} \sum_{i=1}^{n} y_{i}
$$

- $S S_{t}$ is the total sum of squares; it has $(n-1)$ degrees of freedom
- $S S_{e}$ is the explained sum of squares; it has 1 degree of freedom.
- $S S_{r}$ is the residual sum of squares; it has $(n-2)$ degrees of freedom

Note that the degrees of freedom (d.o.f.) are additive, just like the sums of squares:

$$
(n-1)=1+(n-2)
$$

The variances are defined by dividing each sum of squares by the corresponding number of d.o.f.

$$
V_{t}=\frac{S S_{t}}{n-1} \quad V_{e}=S S_{e} \quad V_{r}=\frac{S S_{r}}{n-2}
$$

These are the total, explained, and residual variances, respectively. Note that the variances, unlike the sum of squares, are not additive!

The following quantities are derived from the above equations:

- the coefficient of determination r^{2}

$$
r^{2}=\frac{S S_{e}}{S S_{t}}
$$

r^{2} represents the percentage of the variations of y which are 'explained' by the independent variable. It is always comprised between 0 and 1 . A value of 1 indicates a perfect fit.

- the correlation coefficient r

It is the square root of the coefficient of determination, with the sign of the slope b. It is therefore comprised between -1 and 1 .

- the residual standard deviation s_{r}

It is the square root of the residual variance $\left(s_{r}=\sqrt{V_{r}}\right)$. It is an estimate of the error made on the measurement of the dependent variable y. It should be 0 for a perfect fit.

- the variance ratio F

It is the ratio of the explained variance to the residual variance ($F=$ $\left.V_{e} / V_{r}\right)$. It should be infinite for a perfect fit.

14.3 Precision of parameters

The matrix:

$$
\mathbf{V}=V_{r} \cdot \mathbf{A}^{-1}=V_{r} \cdot\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1}
$$

is called the variance-covariance matrix of the parameters. It is a symmetric matrix with the following structure:

$$
\mathbf{V}=\left[\begin{array}{cc}
\operatorname{Var}(a) & \operatorname{Cov}(a, b) \\
\operatorname{Cov}(a, b) & \operatorname{Var}(b)
\end{array}\right]
$$

The diagonal terms are the variances of the parameters, from which the standard deviations are computed by:

$$
s_{a}=\sqrt{\operatorname{Var}(a)} \quad s_{b}=\sqrt{\operatorname{Var}(b)}
$$

The off-diagonal term is the covariance of the two parameters, from which the correlation coefficient $r_{a b}$ is computed by:

$$
r_{a b}=\frac{\operatorname{Cov}(a, b)}{s_{a} s_{b}}
$$

14.4 Probabilistic interpretation

It is assumed that the residuals $\left(y_{i}-\hat{y}_{i}\right)$ are identically and independently distributed according to a normal distribution with mean 0 and standard deviation σ (estimated by s_{r}).

It may be shown that the regression parameters (a, b) are distributed according to a Student distribution with $(n-2)$ d.o.f.

It is therefore possible to compute a confidence interval for each parameter, for instance:

$$
\left[\begin{array}{ll}
a-t_{1-\alpha / 2} \cdot s_{a} & \left., \quad a+t_{1-\alpha / 2} \cdot s_{a}\right]
\end{array}\right.
$$

where $t_{1-\alpha / 2}$ is the value of the Student variable corresponding to the chosen probability α (usually $\alpha=0.05$). This interval has a probability $(1-\alpha)$ to contain the 'true' value of the parameter.

It is also possible to compute a 'critical' value $F_{1-\alpha}$ from the FisherSnedecor distribution with 1 and $(n-2)$ d.o.f . The fit is considered satisfactory if the variance ratio F exceeds 4 times the critical value.

Note : for the straight line fit, $F_{1-\alpha}=\left(t_{1-\alpha / 2}\right)^{2}$

14.5 Weighted regression

It is assumed here that the variance $v_{i}=\sigma_{i}^{2}$ of the measured value y_{i} is not constant.

The sums of squares become:

$$
S S_{t}=\sum_{i=1}^{n} w_{i}\left(y_{i}-\bar{y}\right)^{2} \quad S S_{e}=\sum_{i=1}^{n} w_{i}\left(\hat{y}_{i}-\bar{y}\right)^{2} \quad S S_{r}=\sum_{i=1}^{n} w_{i}\left(y_{i}-\hat{y}_{i}\right)^{2}
$$

where w_{i} denotes the 'weight', equal to $1 / v_{i}$, and \bar{y} denotes the weighted mean:

$$
\bar{y}=\frac{\sum_{i=1}^{n} w_{i} y_{i}}{\sum_{i=1}^{n} w_{i}}
$$

The regression parameters \mathbf{b} are estimated by:

$$
\mathbf{b}=\left(\mathbf{X}^{\top} \mathbf{W} \mathbf{X}\right)^{-\mathbf{1}}\left(\mathbf{X}^{\top} \mathbf{W} \mathbf{y}\right)
$$

where \mathbf{W} is the diagonal matrix of weights:

$$
\mathbf{W}=\operatorname{diag}\left(w_{1}, w_{2}, \cdots, w_{n}\right)=\left[\begin{array}{cccc}
w_{1} & 0 & \cdots & 0 \\
0 & w_{2} & \cdots & 0 \\
\cdots & \cdots & \cdots & \cdots \\
0 & 0 & 0 & w_{n}
\end{array}\right]
$$

The values of r_{2}, s_{r} and F, as well as the variance-covariance matrix, are computed as above (§ 14.2). The normalized residual for the i-th observation is:

$$
\frac{y_{i}-\hat{y}_{i}}{\sigma_{i}}=\left(y_{i}-\hat{y}_{i}\right) \sqrt{w_{i}}
$$

These normalized residuals should follow the standard normal distribution.

14.6 Programming

14.6.1 Regression procedures

The following subroutines are available:

- LinFit(X, Y, Lb, Ub, B, V) for unweighted linear regression
- WLinFit(X, Y, S, Lb, Ub, B, V) for weighted linear regression

The input parameters are:

- X[Lb. .Ub], Y[Lb. .Ub] : coordinates of points
- $\mathrm{S}[\mathrm{Lb} . \mathrm{Ub}]$: standard deviations of Y values (noted σ_{i} in paragraph 14.5)

The output parameters are:

- $\mathrm{B}[0.1]$: regression parameters
- $\mathrm{V}[0 . .1,0 . .1]$: inverse of the matrix of normal equations (noted \mathbf{A}^{-1} in paragraph 15.1.3). This is not the variance-covariance matrix. This one will be computed by the routines described in the next paragraph.

After a call to one of these procedures, function MathErr returns one of the following error codes:

- MatOk if no error occurred
- MatSing if the matrix of normal equations is quasi-singular

14.6.2 Quality of fit

The parameters used to test the quality of the fit are grouped in a user-defined type:

```
type
    TRegTest = record { Test of regression }
        Vr : Float; { Residual variance }
        R2 : Float; { Coefficient of determination }
        R2a : Float; { Adjusted coeff. of determination }
        F : Float; { Variance ratio (explained/residual) }
        Nu1, Nu2 : Integer; { Degrees of freedom }
    end;
```

They are computed by the following subroutines:

- RegTest(Y, Ycalc, LbY, UbY, V, LbV, UbV, Test) for unweighted regression
- WRegTest(Y, Ycalc, S, LbY, UbY, V, LbV, UbV, Test) for weighted regression

The input parameters are:

- Y [LbY. .UbY]: ordinates of points
- Ycalc[LbY..UbY]: Y values computed from the regression equation, using the fitted parameters B. This computation must be done before calling RegTest or WRegTest.
- V[LbV. .UbV, LbV . .UbV] : the inverse matrix of the normal equations, as returned by the regression procedures.

The output parameters are:

- V : the variance-covariance matrix of the fitted parameters
- Test : variable of type TRegTest, as defined above.

14.7 Demo programs

These programs are located in the demo\curfit subdirectory of the TPMath directory.

14.7.1 Unweighted linear regression

Program reglin.pas performs the least squares fit of a straight line, according to the following equation:

$$
\mathrm{Y}=\mathrm{B}(0)+\mathrm{B}(1) * \mathrm{X}
$$

The parameter vector and variance-covariance matrix are therefore declared as:

```
DimVector(B, 1);
DimMatrix(V, 1, 1);
```

The program calls procedure LinFit, then computes the theoretical Y values:

```
for I := 1 to N do
    Ycalc^[I] := B^[0] + B^[1] * XX^[I];
```

Note that this computation must be done before calling procedure RegTest
The critical values of Student's t and Snedecor's F are computed for the chosen probability Alpha by using the functions from chapter 5 .

```
Tc := InvStudent(N - 2, 1 - 0.5 * Alpha);
Fc := InvSnedecor(1, N - 2, 1 - Alpha);
```

The ouput shows the standardized residuals, equal to $\left(y_{i}-\hat{y}_{i}\right) / \sigma$, where σ is estimated by s_{r}. They should be distributed according to the standard normal distribution.

14.7.2 Weighted linear regression

Program wreglin.bas performs the weighted least squares fit of a straight line. Here the standard deviations σ_{i} of the observed y values are stored in a vector S defined by the user.

The computations involve the same steps as with the previous program, except that procedures WLinFit and WRegTest are used, and that the standardized residuals are computed as $\left(y_{i}-\hat{y}_{i}\right) / \sigma_{i}$

The plot shows the error bars, corresponding to $y_{i} \pm \sigma_{i}$ for each point.

Chapter 15

Multilinear regression and principal component analysis

This chapter describes the routines available in TPMath for multilinear regression, polynomial regression and principal component analysis.

15.1 Multilinear regression

15.1.1 Normal equations

The regression model is:

$$
y=a+b x_{1}+c x_{2}+\cdots
$$

where the x_{i} are m independent variables.
The method of normal equations, studied in chapter 14, is still applicable with:

$$
\mathbf{X}=\left[\begin{array}{ccccc}
1 & x_{11} & x_{12} & \cdots & x_{1 m} \\
1 & x_{21} & x_{22} & \cdots & x_{2 m} \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
1 & x_{n 1} & x_{n 2} & \cdots & x_{n m}
\end{array}\right]
$$

There are $p=m+1$ parameters. The number of observations n must be such that $n>p$.

Special case: The x_{i} may be functions of another variable x, as long as these functions do not contain parameters.

Examples:

- Polynomial: $y=a+b x+c x^{2}+\cdots$
- Fourier series: $y=a+b \sin x+c \sin 2 x+\cdots$

In such cases, the matrix \mathbf{X}, the matrix of normal equations $\mathbf{A}=\mathbf{X}^{\top} \mathbf{X}$ and the constant vector $\mathbf{c}=\mathbf{X}^{\top} \mathbf{y}$ will have special forms. For instance with polynomial regression, if d is the degree of the polynomial:

$$
\begin{gathered}
\mathbf{X}=\left[\begin{array}{ccccc}
1 & x_{1} & x_{1}^{2} & \cdots & x_{1}^{d} \\
1 & x_{2} & x_{2}^{2} & \cdots & x_{2}^{d} \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
1 & x_{n} & x_{n}^{2} & \cdots & x_{n}^{d}
\end{array}\right] \\
\mathbf{A}=\left[\begin{array}{ccccc}
n & \Sigma x_{i} & \Sigma x_{i}^{2} & \cdots & \Sigma x_{i}^{d} \\
\Sigma x_{i} & \Sigma x_{i}^{2} & \Sigma x_{i}^{3} & \cdots & \Sigma x_{i}^{d+1} \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
\Sigma x_{i}^{d} & \Sigma x_{i}^{d+1} & \Sigma x_{i}^{d+2} & \cdots & \Sigma x_{i}^{2 d}
\end{array}\right] \\
\mathbf{c}=\left[\begin{array}{c}
\Sigma y_{i} \\
\Sigma x_{i} y_{i} \\
\cdots \\
\Sigma x_{i}^{d} y_{i}
\end{array}\right]
\end{gathered}
$$

It is possible to use these special forms to simplify the computations. For instance, only the first line and the last column of the above matrix A need to be computed; the others terms are deduced by shifting.

15.1.2 Analysis of variance

Equation 14.1 still holds with the following modifications:

- the explained sum of squares $S S_{e}$ has $(p-1)$ degrees of freedom.
- the residual sum of squares $S S_{r}$ has $(n-p)$ degrees of freedom

Note that the degrees of freedom are still additive:

$$
(n-1)=(p-1)+(n-p)
$$

The explained and residual variances become:

$$
V_{e}=\frac{S S_{e}}{p-1} \quad V_{r}=\frac{S S_{r}}{n-p}
$$

The quantities r^{2}, s_{r}, F are derived as in $\S 14.1$, but here the correlation coefficient r is always positive.

In multilinear regression, the use of r^{2} may be misleading because it is always possible to artificially increase its value by adding more independent variables or using a higher degree polynomial. To overcome this drawback, the adjusted coefficient of determination may be used instead:

$$
r_{a}^{2}=1-\left(1-r^{2}\right) \frac{n-1}{n-p}
$$

15.1.3 Precision of parameters

The variance-covariance matrix \mathbf{V} is computed as in chapter 14. It is a $p \times p$ symmetric matrix such that:

- the diagonal term $V_{i i}$ is the variance of the i-th parameter
- the off-diagonal term $V_{i j}$ is the covariance of the i-th and j-th parameters

The correlation coefficient $r_{i j}$ is computed by:

$$
r_{i j}=\frac{V_{i j}}{\sqrt{V_{i i} V_{j j}}}
$$

15.1.4 Probabilistic interpretation

Assuming that the residuals are identically and independently distributed according to a normal distribution, the regression parameters are distributed according to a Student distribution with $(n-p)$ d.o.f. Confidence intervals may be computed as in chapter 14 .

The 'critical' value $F_{1-\alpha}$ is computed from the Fisher-Snedecor distribution with $(p-1)$ and $(n-p)$ d.o.f. However, the relationship $F_{1-\alpha}=\left(t_{1-\alpha / 2}\right)^{2}$ does not hold if $p>2$.

15.1.5 Weighted regression

Weighted multilinear regression may be performed as for the simple linear case (chap. 14).

15.1.6 Programming

The following subroutines are available:

- MulFit(X, Y, Lb, Ub, Nvar, ConsTerm, B, V) for unweighted multilinear regression
X [Lb. . Ub, 1. .Nvar] is the matrix of independent variables, Y [Lb. . Ub] is the vector of dependent variable, and ConsTerm is a boolean parameter which indicates the presence of a constant term b_{0}. The regression parameters are returned in B and the inverse matrix in V.
- WMulFit(X, Y, S, Lb, Ub, Nvar, ConsTerm, B, V) for weighted multilinear regression

The additional parameter S is a vector containing the standard deviations of the observations.

- SVDFit(X, Y, Lb, Ub, Nvar, ConsTerm, SVDTol, B, V)

Same than MulFit but uses singular value decomposition instead of normal equations. SVDTol is the threshold under which a singular value is considered zero. It is expressed as a fraction of the highest singular value (see paragraph 6.9 for details).

- WSVDFit(X, Y, Lb, Ub, Nvar, ConsTerm, SVDTol, B, V)

Same than WMulFit but uses singular value decomposition.

- PolFit(X, Y, Lb, Ub, Deg, B, V) for unweighted polynomial regression

Here $\mathrm{X}[\mathrm{Lb} . \mathrm{Ub}]$ and $\mathrm{Y}[\mathrm{Lb} . . \mathrm{Ub}]$ are the point coordinates and Deg is the degree of the polynomial.

- WPolFit(X, Y, S, Lb, Ub, Deg, B, V) for weighted polynomial regression

After a call to one of these procedures, function MathErr returns one of the following error codes:

- MatOk if no error occurred
- MatSing if the matrix of normal equations is quasi-singular
- MatErrDim if the array dimensions do not match

15.2 Principal component analysis

15.2.1 Theory

The goal of Principal Component Analysis (PCA) is to replace a set of m variables $\mathbf{x}_{1}, \mathbf{x}_{2}, \cdots \mathbf{x}_{m}$, which may be correlated, by another set $\mathbf{f}_{1}, \mathbf{f}_{2}, \cdots \mathbf{f}_{m}$, called the principal components or principal factors. These factors are independent (uncorrelated) variables.

Usually, the algorithm starts with the correlation matrix \mathbf{R} which is a $m \times m$ symmetric matrix such that $R_{i j}$ is the correlation coefficient between variable \mathbf{x}_{i} and variable \mathbf{x}_{j}.

The eigenvalues $\lambda_{1}, \lambda_{2}, \cdots \lambda_{m}$ (in decreasing order) of matrix \mathbf{R} are the variances of the principal factors. Their sum $\sum_{i=1}^{p} \lambda_{i}$ is equal to m. So, the percentage of variance associated with the i-th factor is equal to λ_{i} / m.

If \mathbf{C} is the matrix of eigenvectors of \mathbf{R}, the correlation coefficient between variable \mathbf{x}_{i} and factor \mathbf{f}_{j} (sometimes called loading) is:

$$
R_{C_{i j}}=C_{i j} \sqrt{\lambda_{j}}
$$

The coordinates of the principal factors (sometimes called scores) are such that:

$$
\mathrm{F}=\mathrm{ZC}
$$

where \mathbf{Z} denotes the matrix of scaled original variables:

$$
Z_{i j}=\frac{X_{i j}-m_{j}}{s_{j}}
$$

where m_{j} and s_{j} are the mean and standard deviation of the j-th variable.
Note that the reduced variables have means 0 and variances 1 , while the principal factors have means 0 and variances λ_{i}.

In most cases, a limited number of principal factors represent the most part of the total variance. It is therefore possible to neglect the other factors and to replace the m original (partially correlated) variables by a smaller set of independent variables. These variables can then be used in a regression analysis instead of the original ones (orthogonalized regression).

15.2.2 Programming

The following subroutines are available:

- VecMean(X, Lb, Ub, Nvar, M) computes the mean vector M[1..Nvar] from matrix X[Lb. .Ub, 1..Nvar].
- VecSD(X, Lb, Ub, Nvar, M, S) computes the standard deviations S[1..Nvar] from matrix X and mean vector M.
- ScaleVar (X, Lb, Ub, Nvar, M, S, Z) computes the scaled variables Z[Lb. .Ub, 1..Nvar] from the original variables X, the means M and the standard deviations S .
- MatVarCov(X, Lb, Ub, Nvar, M, V) computes the variance-covariance matrix V[1..Nvar, 1. .Nvar] from matrix X and mean vector M .
- MatCorrel (V, Nvar, R) computes the correlation matrix R[1. . Nvar, 1..Nvar] from the variance-covariance matrix V.
- PCA(R, Nvar, MaxIter, Tol, Lambda, C, Rc) performs the principal component analysis of the correlation matrix R, which is destroyed. MaxIter and Tol are the maximum number of iterations and the requested tolerance for the Jacobi method (see paragraph 6.10.2). The eigenvalues are returned in vector Lambda[1..Nvar], the eigenvectors in the columns of matrix C[1..Nvar, 1..Nvar]. The matrix Rc[1..Nvar, 1..Nvar] contains the correlation coefficients (loadings) between the original variables (rows) and the principal factors (columns).
- PrinFac(Z, Lb, Ub, Nvar, C, F) computes the principal factors (scores) $\mathrm{F}[\mathrm{Lb} . . \mathrm{Ub}, 1 . . \mathrm{Nvar}]$ from the scaled variables Z and the matrix of eigenvectors C.

After a call to these procedures, function MathErr returns one of the following error codes:

- MatOk if no error occurred
- MatErrDim if the array dimensions do not match
- MatNonConv if the iterative procedure (Jacobi method) did not converge in subroutine PCA

15.3 Demo programs

These programs are located in the demo\curfit subdirectory of the TPMath directory.

15.3.1 Multilinear regression

Program regmult.pas performs a multilinear least squares fit with Nvar $=$ 4 independent variables, according to the following equation:

$$
\mathrm{Y}=\mathrm{B}(0)+\mathrm{B}(1) * \mathrm{X} 1+\mathrm{B}(2) * \mathrm{X} 2+\mathrm{B}(3) * \mathrm{X} 3+\mathrm{B}(4) * \mathrm{X} 4
$$

The data are stored in a matrix X and a vector Y .
The parameter vector and variance-covariance matrix are declared as:

```
DimVector(B, Nvar);
DimMatrix(V, Nvar, Nvar);
```

The program calls procedure MulFit or SVDFit, then computes the theoretical Y values:

```
for I := 1 to N do
    begin
        if ConsTerm then Ycalc^[I] := B^[0] else Ycalc^[I] := 0.0;
        for J := 1 to Nvar do
            Ycalc^[I] := Ycalc^[I] + B^[J] * XX^[I]^[J];
    end;
```

Note that this computation must be done before calling procedure RegTest
The critical values of Student's t and Snedecor's F are computed for the chosen probability Alpha by using the functions from chapter 5 .

```
Tc := InvStudent(Test.Nu2, 1 - 0.5 * Alpha);
Fc := InvSnedecor(Test.Nu1, Test.Nu2, 1 - Alpha);
```

where Test.Nu1 and Test.Nu2 are the numbers of d.o.f., returned by procedure RegTest.

The ouput shows the standardized residuals, equal to $\left(y_{i}-\hat{y}_{i}\right) / \sigma$, where σ is estimated by s_{r}. They should be distributed according to the standard normal distribution.

Due to the multi-dimensional nature of the relationship, a plot of y as a function of the x 's is not possible. Rather, the program plots a diagram of the observed and computed values of y, together with the theoretical line $\hat{y}=y$.

15.3.2 Polynomial regression

Program regpoly.pas performs a polynomial least squares fit. The structure of the program is very similar to the previous one, with the degree of the polynomial (Deg) playing the role of the number of variables (Nvar).

Here, only a vector X is needed to store the values of the independent variable, since the powers of x are computed by the polynomial regression routine PolFit.

The theoretical Y values are computed by means of function Poly, studied in chapter 9 .

The program plots the fitted curve by calling the plotting subroutine PlotFunc. The function which is passed to this subroutine is defined as:

```
function PltFunc(X : Float) : Float;
begin
    PltFunc := Poly(X, B, Deg);
end;
```

The definition of procedure PlotFunc does not allow additional parameters for PltFunc. This is the only reason why the parameter vector B is declared as a global variable.

15.3.3 Principal component analysis

Program pcatest.pas performs a principal component analysis on a set of 4 variables (Example taken from: P. DAGNELIE, Analyse statistique à plusieurs variables, Presses Agronomiques de Gembloux, Belgique, 1982). The program prints:

- The mean vector and variance-covariance matrix of the original variables
- The correlation coefficients between the original variables
- The eigenvalues and eigenvectors of the correlation matrix
- The correlation coefficients between the principal factors and the original variables
- The values of the principal factors for each point

It may be seen that:

- High correlations exist between the original variables, which are therefore not independent
- According to the eigenvalues, the last two principal factors may be neglected since they represent less than 11% of the total variance. So, the original variables depend mainly on the first two factors
- The first principal factor is negatively correlated with the second and fourth variables, and positively correlated with the third variable
- The second principal factor is positively correlated with the first variable
- The table of principal factors show that the highest scores are usually associated with the first two principal factors, in agreement with the previous results

Chapter 16

Nonlinear regression

This chapter describes the routines available in TPMath for fitting models which are nonlinear with respect to their parameters. For instance, the exponential model $y=a e^{-b x}$ is nonlinear with respect to the parameter b.

16.1 Theory

The regression model is:

$$
y=f(x ; a, b \cdots)
$$

where f is a nonlinear function of the parameters $a, b \cdots$
Assume that we have a first estimate $\left(a^{0}, b^{0} \cdots\right)$ of the parameters. Let us write the Taylor series expansion of y in the vicinity of this estimate:

$$
y=y^{0}+y_{a}^{\prime} \cdot\left(a-a^{0}\right)+y_{b}^{\prime} \cdot\left(b-b^{0}\right)+\cdots
$$

where:

$$
\begin{aligned}
y^{0} & =f\left(x ; a^{0}, b^{0} \cdots\right) \\
y_{a}^{\prime} & =\frac{\partial f}{\partial a}\left(x ; a^{0}, b^{0} \cdots\right) \\
y_{b}^{\prime} & =\frac{\partial f}{\partial b}\left(x ; a^{0}, b^{0} \cdots\right)
\end{aligned}
$$

The equation may be rewritten as:

$$
y-y^{0}=y_{a}^{\prime} \cdot\left(a-a^{0}\right)+y_{b}^{\prime} \cdot\left(b-b^{0}\right)+\cdots
$$

which corresponds to the linear regression problem:

$$
\mathbf{z}=\mathbf{J} \cdot \delta
$$

with:

$$
\mathbf{z}=\left[\begin{array}{c}
y_{1}-y_{1}^{0} \\
y_{2}-y_{2}^{0} \\
\cdots \\
y_{n}-y_{n}^{0}
\end{array}\right] \quad \mathbf{J}=\left[\begin{array}{ccc}
y_{a 1}^{\prime} & y_{b 1}^{\prime} & \cdots \\
y_{a 2}^{\prime} & y_{b 2}^{\prime} & \cdots \\
\cdots & \cdots & \cdots \\
y_{a n}^{\prime} & y_{b n}^{\prime} & \cdots
\end{array}\right] \quad \delta=\left[\begin{array}{c}
a-a^{0} \\
b-b^{0} \\
\cdots
\end{array}\right]
$$

where \mathbf{J} is the Jacobian matrix, such that $y_{a i}^{\prime}=\partial f\left(x_{i} ; a^{0}, b^{0} \cdots\right) / \partial a$ etc.
Application of the linear regression relationships leads to:

$$
\begin{equation*}
\delta=\left(\mathbf{J}^{\top} \mathbf{J}\right)^{-\mathbf{1}}\left(\mathbf{J}^{\top} \mathbf{z}\right) \tag{16.1}
\end{equation*}
$$

Knowing the correction vector δ, it is possible to compute better estimates a and b of the parameters. The process is repeated until convergence of the parameter estimates.

The method so described is known as the Gauss-Newton method. It is usually combined with nonlinear optimization, usually Marquardt's method, in order to minimize the sum of squared residuals:

$$
S S_{r}=\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}=\Phi(a, b \cdots)
$$

In this case, the gradient vector \mathbf{g} and hessian matrix \mathbf{H} of function Φ are computed by the following relationships:

$$
\begin{equation*}
\mathbf{g}=-\mathbf{J}^{\top} \mathbf{z} \quad \mathbf{H}=\mathbf{J}^{\top} \mathbf{J} \tag{16.2}
\end{equation*}
$$

so that the Gauss-Newton formula (16.1) becomes equivalent to the NewtonRaphson formula for nonlinear optimization (p. 51).

Note that, in the previous formula:

1. \mathbf{g} and \mathbf{H} are scaled by a factor $1 / 2$ since this factor cancels during the computations.
2. The expression of \mathbf{H} is only approximate, since a factor containing the term $\left(y_{i}-\hat{y}_{i}\right)$ is neglected during the computation of the second partial derivatives:

$$
\frac{\partial^{2} \Phi}{\partial a \partial b}=\sum_{i=1}^{n}\left[\frac{\partial \hat{y}_{i}}{\partial a} \frac{\partial \hat{y}_{i}}{\partial b}-\left(y_{i}-\hat{y}_{i}\right) \frac{\partial^{2} \hat{y}_{i}}{\partial a \partial b}\right]
$$

The residual variance is:

$$
V_{r}=\frac{S S_{r}}{n-p}
$$

where p is the number of parameters in the model.
It is still possible to compute r^{2} and F, as well as confidence intervals, but their interpretation is less straightforward since the ANOVA relationship (§14.1) does not hold for nonlinear models. In this case, r^{2} may be >1 ! Moreover, the distribution of the parameters is only approximately described by the Student distribution.

16.2 Monte-Carlo simulation

The distribution of the regression parameters may be simulated by the MCMC method discussed in § 12.2 (p. 84).

Let β denote the vector of model parameters. According to Bayes' theorem, the posterior probability density $\pi(\beta)$ of these parameters is given by:

$$
\pi(\beta)=\frac{L(\beta) P(\beta)}{\int L(\beta) P(\beta) d \beta}=\frac{L(\beta) P(\beta)}{N}
$$

where $P(\beta)$ denotes the prior probability density of the parameters and $L(\beta)$ denotes the likelihood, i.e. the probability of observing the experimental results $\left(x_{i}, y_{i}\right)$ given the parameters.

The integral which appears in the denominator is usually too complex to be calculated and is therefore treated as a normalizing constant N.

Assuming that, for a given β, the residuals $\left(y_{i}-\hat{y}_{i}\right)$ are identically and independently distributed according to a normal distribution with variance σ^{2}, the likelihood is given by:

$$
L(\beta)=\prod_{i=1}^{n}\left(\frac{1}{\sigma \sqrt{2 \pi}} \exp \left[-\frac{\left(y_{i}-\hat{y}_{i}\right)^{2}}{2 \sigma^{2}}\right]\right)
$$

If we choose a uniform prior probability $P(\beta)$ over an interval \mathcal{B}, the posterior probability becomes:

$$
\pi(\beta)=C \prod_{i=1}^{n} \exp \left[-\frac{\left(y_{i}-\hat{y}_{i}\right)^{2}}{2 \sigma^{2}}\right]
$$

where C is a constant.

In order to use the Metropolis-Hastings algorithm, as described in chapter 12.2 , we define the function:

$$
F(\beta)=\left\{\begin{array}{cl}
-2 \ln \frac{\pi(\beta)}{C}=\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2} & \text { if } \beta \in \mathcal{B} \tag{16.3}\\
\infty & \text { otherwise }
\end{array}\right.
$$

It is the same objective function than for the nonlinear regression algorithm, except that it is bounded on the interval \mathcal{B}.

16.3 Regression procedures

16.3.1 Optimization methods

TPMath offers three deterministic optimizers: Marquardt, Simplex and BFGS (see chapter 7) and two stochastic optimizers: Simulated Annealing and Genetic Algorithm (see chapter 12)

The Marquardt method is selected by default. This selection can be changed with the statement SetOptAlgo(Algo) were Algo may have one of the following values:

NL_MARQ	for Marquardt
NL_SIMP	for Simplex
NL_BFGS	for BFGS
NL_SA	for Simulated Annealing
NL_GA	for Genetic Algorithm

16.3.2 Maximal number of parameters

By default, the maximal number of regression parameters is set to 10 . This value may be changed with the statement $\operatorname{SetMaxParam}(\mathbb{N})$ where N is a number up to 255 .

16.3.3 Parameter bounds

It is assumed that each regression parameter varies within an interval $[a, b]$. By default, this interval is set to $\left[-10^{6}, 10^{6}\right]$ which is way too large for most applications. It is possible to change this interval with the statement:

```
SetParamBounds(I, ParamMin, ParamMax)
```

where I is the index of the parameter and ParamMin and ParamMax are the bounds.

Defining realistic intervals for the parameters is essential when using stochastic optimizers.

16.3.4 Nonlinear regression

Nonlinear regression is performed by the two procedures:

- NLFit(RegFunc, DerivProc, X, Y, Lb, Ub, MaxIter, Tol, B, FirstPar, LastPar, V) for unweighted regression
- WNLFit(RegFunc, DerivProc, X, Y, S, Lb, Ub, MaxIter, Tol, B, FirstPar, LastPar, V) for weighted regression
where:
- RegFunc is the function to be fitted, defined as:

```
function RegFunc(X : Float; B : PVector) : Float;
```

where X is the independent variable and B the vector of regression parameters. This function is of type TRegFunc.

- DerivProc is the procedure used to compute the partial derivatives of the regression function with respect to the parameters. It is defined as:

```
procedure DerivProc(X, Y : Float; B, D : PVector);
```

where D is the vector of derivatives at point (X, Y) (one row of the Jacobian). This procedure is of type TDerivProc.

- X [Lb. .Ub], Y[Lb. .Ub] are the point coordinates and S[Lb..Ub] are the standard deviations
- MaxIter is the maximum number of iterations for the optimization procedure
- Tol is the required precision for the regression parameters
- B [FirstPar. .LastPar] is the vector of fitted parameters
- V [FirstPar. .LastPar, FirstPar..LastPar] is the inverse matrix $\left(\mathbf{J}^{\top} \mathbf{J}\right)^{-1}$

16.3.5 Monte-Carlo simulation

The statistical distribution of the regression parameters is simulated by the following procedures:

- SimFit(RegFunc, X, Y, Lb, Ub, B, FirstPar, LastPar, V) for unweighted regression
- WSimFit(RegFunc, X, Y, S, Lb, Ub, B, FirstPar, LastPar, V) for weighted regression
where the parameters have the same meaning than in the nonlinear regression procedures, except that here V is the variance-covariance matrix.

The results of the last simulation cycle are saved in an ASCII file. The name of this file may be defined by the statement SetMCFile(FileName). The default file name is mcmc.txt

16.4 Demo programs

These programs are located in the demo\curfit subdirectory.

16.4.1 Nonlinear regression

Program regnlin.pas performs a nonlinear least squares fit of the exponential model:

$$
y=a e^{-b x}
$$

The partial derivatives used to compute the Jacobian are:

$$
\frac{\partial y}{\partial a}=e^{-b x} \quad \frac{\partial y}{\partial b}=-a x e^{-b x}
$$

Initial estimates of the parameters B are obtained by linearization:

$$
\ln y=\ln a-b x
$$

However, this transformation modifies the standard deviations of the independent variables:

$$
\sigma(\ln y) \approx \mathrm{d} \ln y=\frac{\mathrm{d} y}{y} \approx \frac{\sigma(y)}{y}
$$

It is therefore recommended to use weighted linear regression for this step.

Subroutine ApproxFit selects the data points for which the transformation is appropriate (i. e. $y>0$) and stores the transformed coordinates and their standard deviations in 3 vectors X1, Y1, S1 which are passed to the weighted linear regression subroutine WLinFit. The fitted parameters are returned in vector A[0..1]. They are then transformed back to the original form of the model:

```
B^[1] := Exp(A^[0]);
B^[2] := - A^[1];
```

Marquardt's method is then used to perform nonlinear minimization of the residual sum of squares, by means of subroutine NLFit. Function RegFunc and procedure DerivProc are defined as follows:

```
function RegFunc(X : Float; B : PVector) : Float;
begin
    RegFunc := B^[1] * Exp(- B^[2] * X);
end;
procedure DerivProc(X, Y : Float; B, D : PVector);
begin
    D^[1] := Exp(- B^[2] * X);
    D^[2] := - B^[1] * X * D^[1];
end;
```

Since the parameter lists of these procedures cannot be modified, the other variables which they must access are made global.

The results of the minimization are printed as with the linear regression programs, except that the correlation coefficients are shown only if $r \leq 1$.

The program may be adapted to another regression model by changing the following parts:

- the function name (constant FuncName)
- the constants FirstPar and LastPar which define the bounds of the parameter array B
- the subroutine ApproxFit which computes the initial estimates of the parameters
- the definition of the regression model in function RegFunc
- the definition of derivatives in subroutine DerivProc

16.4.2 Monte-Carlo simulation

Program mcsim.pas simulates the posterior distribution of the regression parameters for the previous exponential model.

The settings for the MCMC procedure are defined as follows:

```
const
    NCycles = 10; { Number of cycles }
    MaxSim = 1000; { Max nb of simulations at each cycle }
    SavedSim = 1000; { Nb of simulations to be saved }
    MCFile = 'mcsim.txt'; { File for storing simulation results }
```

The algorithm is initialized with:

```
InitMHParams(NCycles, MaxSim, SavedSim);
SetMCFile(MCFile);
```

Proper intervals are defined for the two parameters:

```
SetParamBounds(1, 100, 1000);
SetParamBounds (2, 0.1, 1);
```

The SimFit procedure is then called. After the computation is done, the program plots a graph showing the distribution of the parameters.

Chapter 17

String functions

Some string functions have been added to TPMath, mainly to help printing results.

17.1 Trim functions

- function LTrim(S) removes the leading blanks in string S
- function $\operatorname{RTrim}(\mathrm{S})$ removes the trailing blanks in string S
- function Trim(S) removes the leading and trailing blanks in string S

17.2 Fill functions

- function RFill(S, L) returns string S completed with trailing blanks for a total length L
- function LFill(S, L) returns string S completed with leading blanks for a total length L
- function CFill(S, L) returns string S completed with leading blanks so as to center the string on a total length L
- function $\operatorname{StrChar}(\mathrm{N}, \mathrm{C})$ returns a string made of character C repeated N times

17.3 Character replacement

Subroutine Replace (S, C1, C2) replaces in string S all the occurences of character C1 by character C2

17.4 Parsing

- function Extract(S, Index, Delim) extracts a field from string S. Index is the position of the first character of the field. Delim is the character used to separate fields (e.g. blank, comma or tabulation). Blanks immediately following Delim are ignored. Index is updated to the position of the next field.
- procedure Parse(S, Delim, Field, N) parses string S into its constitutive fields. Delim is the field separator. The number of fields is returned in N. The fields are returned in Field^[0]. .Field^[N - 1]. Field must be dimensioned in the calling program.

17.5 Formatting functions

These functions allow to convert numbers to strings.

- procedure SetFormat(NumLength, MaxDec, FloatPoint, NSZero) defines the numeric format, according to the following parameters:

NumLength	$:$	Length of numeric field (default 10)
MaxDec	$:$	Max. number of decimal places (default 4)
FloatPoint	$:$	Select floating point notation (default False)
NSZero	$:$	Write non significant zero's (default True)

- function FloatStr (X) converts the real number X to a string according to the numeric format specified by SetFormat
- function $\operatorname{IntStr}(\mathrm{N})$ converts the integer N to a string.
- function CompStr (Z : Complex) converts the complex number Z to a string.

