File: GraphicsMathLibrary.pas

package info (click to toggle)
mricron 1.0.20190902%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 38,868 kB
  • sloc: pascal: 168,782; sh: 72; makefile: 28
file content (1116 lines) | stat: -rwxr-xr-x 38,707 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
// The author gave written permission to distribute this file under the
//  same licensing terms as MRICRON.
//
// Graphics Math Library
//
// Copyright (C) 1982, 1985, 1992, 1995-1998 Earl F. Glynn, Overland Park, KS.
// All Rights Reserved.  E-Mail Address:  EarlGlynn@att.net

UNIT GraphicsMathLibrary;  // Matrix/Vector Operations for 2D/3D Graphics}
  {$Include isgui.inc}
INTERFACE

  USES

    SysUtils {$IFDEF GUI},Dialogs {$ENDIF};

  CONST
    sizeUndefined = 1;
    size2D        = 3;   // 'size' of 2D homogeneous vector or transform matrix
	size3D        = 4;   // 'size' of 3D homogeneous vector or transform matrix

  TYPE
    EVectorError = CLASS(Exception);
    EMatrixError = CLASS(Exception);

    TAxis       = (axisX, axisY, axisZ);
    TCoordinate = (coordCartesian, coordSpherical, coordCylindrical);
    TDimension  = (dimen2D, dimen3D);  // two- or three-dimensional TYPE
    TIndex      = 1..4;      // index of 'TMatrix' and 'TVector' TYPEs

    TMatrixI     =            // transformation 'matrix'
      RECORD
        size:    TIndex;
        matrix:  ARRAY[TIndex,TIndex] OF integer;
      END;

    TMatrix     =            // transformation 'matrix'
      RECORD
        size:    TIndex;
        matrix:  ARRAY[TIndex,TIndex] OF single //azx DOUBLE
      END;

    Trotation   = (rotateClockwise, rotateCounterClockwise);

    // Normally the TVector TYPE is used to define 2D/3D homogenous
    // cartesian coordinates for graphics, i.e., (x,y,1) for 2D and
    // (x,y,z,1) for 3D.
    //
    // Cartesian coordinates can be converted to spherical (r, theta, phi),
    // or cylindrical coordinates (r,theta, z).  Spherical or cylindrical
    // coordinates can be converted back to cartesian coordinates.
    TVector     =
      RECORD
        size: TIndex;
        CASE INTEGER OF
          0:  (vector:  ARRAY[TIndex] OF single);
          1:  (x:  single;
               y:  single;
               z:  single;   // contains 'h' for 2D cartesian vector
               h:  single)
        END;

    TIntVector     =
      RECORD
        size: TIndex;
        CASE INTEGER OF
          0:  (vector:  ARRAY[TIndex] OF integer);
          1:  (x:  integer;
               y:  integer;
               z:  integer;   // contains 'h' for 2D cartesian vector
               h:  integer)
        END;
                                                 // Vector Operations

//  FUNCTION Vector2D  (CONST xValue, yValue:          DOUBLE):  TVector;
  FUNCTION Vector3D  (CONST xValue, yValue, zValue:  DOUBLE):  TVector;
    Function SameVec (const u,v: TVector): boolean;
    Function Eye3D: TMatrix; //returns identity matrix
  FUNCTION Transform (CONST u:  TVector; CONST a:  TMatrix):  TVector;
(*  FUNCTION AddVectors (CONST u,v:  TVector):  TVector;
//  FUNCTION Transform (CONST u:  TVector; CONST a:  TMatrix):  TVector;

  FUNCTION DotProduct  (CONST u,v:  TVector):  DOUBLE;
  FUNCTION CrossProduct(CONST u,v:  TVector):  TVector;
  *)

                                                 // Basic Matrix Operations

  FUNCTION Matrix2D (CONST m11,m12,m13,          // 2D "graphics" matrix
                           m21,m22,m23,
                           m31,m32,m33:  DOUBLE):  TMatrix;

  FUNCTION Matrix3D (CONST m11,m12,m13,m14,      // 3D "graphics" matrix
						   m21,m22,m23,m24,
						   m31,m32,m33,m34,
						   m41,m42,m43,m44:  DOUBLE):  TMatrix;
  FUNCTION DotProduct  (CONST u,v:  TVector):  DOUBLE;
      FUNCTION CrossProduct(CONST u,v:  TVector):  TVector;

    procedure NormalizeVector(var u:  TVector);
  function nifti_mat33_determ( R: TMatrix ):double;   //* determinant of 3x3 matrix */

  procedure nifti_mat44_to_quatern( lR :TMatrix;
                             var qb, qc, qd,
                             qx, qy, qz,
                             dx, dy, dz, qfac : single);
  FUNCTION MultiplyMatrices (CONST a,b:  TMatrix):  TMatrix;

  FUNCTION InvertMatrix3D  (CONST Input:TMatrix):  TMatrix;

  FUNCTION InvertMatrix  (CONST a,b:  TMatrix; VAR determinant:  DOUBLE):  TMatrix;


                                                 // Transformation Matrices

  FUNCTION RotateMatrix     (CONST dimension:  TDimension;
                             CONST xyz      :  TAxis;
                             CONST angle    :  DOUBLE;
                             CONST rotation :  Trotation):  TMatrix;

//  FUNCTION ScaleMatrix      (CONST s:  TVector):  TMatrix;

//  FUNCTION TranslateMatrix  (CONST t:  TVector):  TMatrix;

  FUNCTION ViewTransformMatrix (CONST coordinate:  TCoordinate;
       CONST azimuth {or x}, elevation {or y}, distance {or z}:  DOUBLE;
       CONST ScreenX, ScreenY, ScreenDistance:  DOUBLE):  TMatrix;


                                                 // conversions

//  FUNCTION FromCartesian (CONST ToCoordinate:  TCoordinate; CONST u:  TVector):  TVector;
//  FUNCTION ToCartesian   (CONST FromCoordinate:  TCoordinate; CONST u:  TVector):  TVector;

  //FUNCTION ToDegrees(CONST angle {radians}:  DOUBLE):  DOUBLE {degrees};
  FUNCTION ToRadians(CONST angle {degrees}:  DOUBLE):  DOUBLE {radians};

                                                 // miscellaneous

  FUNCTION  Defuzz(CONST x:  DOUBLE):  DOUBLE;
{  FUNCTION  GetFuzz:  DOUBLE;
  PROCEDURE SetFuzz(CONST x:  DOUBLE);
 }

IMPLEMENTATION

Function Eye3D: TMatrix; //returns identity matrix
begin
     result := Matrix3D   (1,0,0,0,
                         0,1,0,0,
                         0,0,1,0,
                         0,0,0,1);
  end;
  
  // 'Transform' multiplies a row 'vector' by a transformation 'matrix'
  // resulting in a new row 'vector'.  The 'size' of the 'vector' and 'matrix'
  // must agree.  To save execution time, the vectors are assumed to contain
  // a homogeneous coordinate.
  FUNCTION Transform (CONST u:  TVector; CONST a:  TMatrix):  TVector;
    VAR
      i,k :  TIndex;
      temp:  DOUBLE;
  BEGIN
    RESULT.size := a.size;
    IF  a.size = u.size
    THEN BEGIN
      FOR i := 1 TO a.size-1 DO
      BEGIN
        temp := 0.0;
        FOR k := 1 TO a.size DO
        BEGIN
          temp := temp + u.vector[k]*a.matrix[k,i];
        END;
        RESULT.vector[i] := Defuzz(temp)
      END;
      RESULT.vector[a.size] := 1.0 {assume homogeneous coordinate}
    END
    ELSE raise EMatrixError.Create('Transform multiply error'+inttostr(a.size)+' '+inttostr(u.size))
  END {Transform};


  VAR
    fuzz : DOUBLE;
  FUNCTION DotProduct  (CONST u,v:  TVector):  DOUBLE;
    VAR
      i:  INTEGER;
  BEGIN
    IF  (u.size = v.size)
    THEN BEGIN
      RESULT := 0.0;
      FOR i := 1 TO u.size-1 DO
      BEGIN
        RESULT := RESULT + u.vector[i] * v.vector[i];
      END;
    END
    ELSE RAISE EMatrixError.Create('Vector dot product error')
  END; {DotProduct}

  FUNCTION CrossProduct(CONST u,v:  TVector):  TVector;
  BEGIN
    IF  (u.size = v.size) AND (u.size = size3D)
    THEN BEGIN
      RESULT := Vector3D( u.y*v.z - v.y*u.z,
                         -u.x*v.z + v.x*u.z,
                          u.x*v.y - v.x*u.y)
    END
    ELSE RAISE EMatrixError.Create('Vector cross product error')
  END; {CrossProduct}

  procedure NormalizeVector(var u:  TVector);
  var
     lSum: double;
  BEGIN
      lSum := sqrt((u.x*u.x)+(u.y*u.y)+(u.z*u.z));
      if lSum <> 0 then
         u := Vector3D( u.x/lSum,
                         u.y/lSum,
                          u.z/lSum)
  END; {CrossProduct}



procedure FromMatrix (M: TMatrix; var  m11,m12,m13, m21,m22,m23,
						   m31,m32,m33:  DOUBLE)  ;
  BEGIN

   m11 := M.Matrix[1,1];
   m12 := M.Matrix[1,2];
   m13 := M.Matrix[1,3];
   m21 := M.Matrix[2,1];
   m22 := M.Matrix[2,2];
   m23 := M.Matrix[2,3];
   m31 := M.Matrix[3,1];
   m32 := M.Matrix[3,2];
   m33 := M.Matrix[3,3];
END {FromMatrix3D};


function nifti_mat33_determ( R: TMatrix ):double;   //* determinant of 3x3 matrix */
begin
   result := r.matrix[1,1]*r.matrix[2,2]*r.matrix[3,3]
          -r.matrix[1,1]*r.matrix[3,2]*r.matrix[2,3]
          -r.matrix[2,1]*r.matrix[1,2]*r.matrix[3,3]
         +r.matrix[2,1]*r.matrix[3,2]*r.matrix[1,3]
         +r.matrix[3,1]*r.matrix[1,2]*r.matrix[2,3]
         -r.matrix[3,1]*r.matrix[2,2]*r.matrix[1,3] ;
end;



function nifti_mat33_rownorm( A: TMatrix ): single;  //* max row norm of 3x3 matrix */
var
   r1,r2,r3: single ;
begin
   r1 := abs(A.matrix[1,1])+abs(A.matrix[1,2])+abs(A.matrix[1,3]) ;
   r2 := abs(A.matrix[2,1])+abs(A.matrix[2,2])+abs(A.matrix[2,3]) ;
   r3 := abs(A.matrix[3,1])+abs(A.matrix[3,2])+abs(A.matrix[3,3]) ;
   if( r1 < r2 ) then r1 := r2 ;
   if( r1 < r3 ) then r1 := r3 ;
   result := r1 ;
end;

function nifti_mat33_colnorm( A: TMatrix ): single;  //* max column norm of 3x3 matrix */
var
   r1,r2,r3: single ;
begin
   r1 := abs(A.matrix[1,1])+abs(A.matrix[2,1])+abs(A.matrix[3,1]) ;
   r2 := abs(A.matrix[1,2])+abs(A.matrix[2,2])+abs(A.matrix[3,2]) ;
   r3 := abs(A.matrix[1,3])+abs(A.matrix[2,3])+abs(A.matrix[3,3]) ;
   if( r1 < r2 ) then r1 := r2 ;
   if( r1 < r3 ) then r1 := r3 ;
   result := r1 ;
end;

function nifti_mat33_inverse( R: TMatrix ): TMatrix;   //* inverse of 3x3 matrix */
var
   r11,r12,r13,r21,r22,r23,r31,r32,r33 , deti: double ;
   Q: TMatrix ;
begin
   FromMatrix(R,r11,r12,r13,r21,r22,r23,r31,r32,r33);
   deti := r11*r22*r33-r11*r32*r23-r21*r12*r33
         +r21*r32*r13+r31*r12*r23-r31*r22*r13 ;

   if( deti <> 0.0 ) then deti := 1.0 / deti ;

   Q.matrix[1,1] := deti*( r22*r33-r32*r23) ;
   Q.matrix[1,2] := deti*(-r12*r33+r32*r13) ;
   Q.matrix[1,3] := deti*( r12*r23-r22*r13) ;

   Q.matrix[2,1] := deti*(-r21*r33+r31*r23) ;
   Q.matrix[2,2] := deti*( r11*r33-r31*r13) ;
   Q.matrix[2,3] := deti*(-r11*r23+r21*r13) ;

   Q.matrix[3,1] := deti*( r21*r32-r31*r22) ;
   Q.matrix[3,2] := deti*(-r11*r32+r31*r12) ;
   Q.matrix[3,3] := deti*( r11*r22-r21*r12) ;
   result := Q;
end;



(*procedure ReportMatrix (lStr: string;lM:TMatrix);
begin
	showmessage(lStr);
	showmessage(	RealToStr(lM.matrix[1,1],6)+','+RealToStr(lM.matrix[1,2],6)+','+RealToStr(lM.matrix[1,3],6)+','+RealToStr(lM.matrix[1,4],6));
	showmessage(	RealToStr(lM.matrix[2,1],6)+','+RealToStr(lM.matrix[2,2],6)+','+RealToStr(lM.matrix[2,3],6)+','+RealToStr(lM.matrix[2,4],6));
	showmessage(	RealToStr(lM.matrix[3,1],6)+','+RealToStr(lM.matrix[3,2],6)+','+RealToStr(lM.matrix[3,3],6)+','+RealToStr(lM.matrix[3,4],6));
	showmessage(	RealToStr(lM.matrix[4,1],6)+','+RealToStr(lM.matrix[4,2],6)+','+RealToStr(lM.matrix[4,3],6)+','+RealToStr(lM.matrix[4,4],6));
end;*)

(*---------------------------------------------------------------------------*)
(*! polar decomposition of a 3x3 matrix

   This finds the closest orthogonal matrix to input A
   (in both the Frobenius and L2 norms).

   Algorithm is that from NJ Higham, SIAM J Sci Stat Comput, 7:1160-1174.
*)(*-------------------------------------------------------------------------*)
function nifti_mat33_polar( A: TMatrix ): TMatrix;
const
    dif: single=1.0 ;
   k: integer=0 ;

var
   X , Y , Z: TMatrix ;
   alp,bet,gam,gmi : single;
begin
   X := A ;
   (* force matrix to be nonsingular *)
   //reportmatrix('x',X);
   gam := nifti_mat33_determ(X) ;
   while( gam = 0.0 )do begin        (* perturb matrix *)
     gam := 0.00001 * ( 0.001 + nifti_mat33_rownorm(X) ) ;
     X.matrix[1,1] := X.matrix[1,1]+gam ;
     X.matrix[2,2] := X.matrix[2,2]+gam ;
     X.matrix[3,3] := X.matrix[3,3] +gam ;
     gam := nifti_mat33_determ(X) ;
   end;

   while true do begin
     Y := nifti_mat33_inverse(X) ;
     if( dif > 0.3 )then begin     (* far from convergence *)
       alp := sqrt( nifti_mat33_rownorm(X) * nifti_mat33_colnorm(X) ) ;
       bet := sqrt( nifti_mat33_rownorm(Y) * nifti_mat33_colnorm(Y) ) ;
       gam := sqrt( bet / alp ) ;
       gmi := 1.0 / gam ;
     end else begin
       gam := 1.0;
       gmi := 1.0 ;  (* close to convergence *)
     end;
     Z.matrix[1,1] := 0.5 * ( gam*X.matrix[1,1] + gmi*Y.matrix[1,1] ) ;
     Z.matrix[1,2] := 0.5 * ( gam*X.matrix[1,2] + gmi*Y.matrix[2,1] ) ;
     Z.matrix[1,3] := 0.5 * ( gam*X.matrix[1,3] + gmi*Y.matrix[3,1] ) ;
     Z.matrix[2,1] := 0.5 * ( gam*X.matrix[2,1] + gmi*Y.matrix[1,2] ) ;
     Z.matrix[2,2] := 0.5 * ( gam*X.matrix[2,2] + gmi*Y.matrix[2,2] ) ;
     Z.matrix[2,3] := 0.5 * ( gam*X.matrix[2,3] + gmi*Y.matrix[3,2] ) ;
     Z.matrix[3,1] := 0.5 * ( gam*X.matrix[3,1] + gmi*Y.matrix[1,3] ) ;
     Z.matrix[3,2] := 0.5 * ( gam*X.matrix[3,2] + gmi*Y.matrix[2,3] ) ;
     Z.matrix[3,3] := 0.5 * ( gam*X.matrix[3,3] + gmi*Y.matrix[3,3] ) ;

     dif := abs(Z.matrix[1,1]-X.matrix[1,1])+abs(Z.matrix[1,2]-X.matrix[1,2])
          +abs(Z.matrix[1,3]-X.matrix[1,3])+abs(Z.matrix[2,1]-X.matrix[2,1])
          +abs(Z.matrix[2,2]-X.matrix[2,2])+abs(Z.matrix[2,3]-X.matrix[2,3])
          +abs(Z.matrix[3,1]-X.matrix[3,1])+abs(Z.matrix[3,2]-X.matrix[3,2])
          +abs(Z.matrix[3,3]-X.matrix[3,3])                          ;
     k := k+1 ;
     if( k > 100) or (dif < 3.e-6 ) then begin
         result := Z;
         break ;  (* convergence or exhaustion *)
     end;
     X := Z ;
   end;

   result := Z ;
end;

procedure nifti_mat44_to_quatern( lR :TMatrix;
                             var qb, qc, qd,
                             qx, qy, qz,
                             dx, dy, dz, qfac : single);
var
   r11,r12,r13 , r21,r22,r23 , r31,r32,r33, xd,yd,zd , a,b,c,d : double;
   P,Q: TMatrix;  //3x3
begin


   (* offset outputs are read write out of input matrix  *)
   qx := lR.matrix[1,4];
   qy := lR.matrix[2,4];
   qz := lR.matrix[3,4];

   (* load 3x3 matrix into local variables *)
   FromMatrix(lR,r11,r12,r13,r21,r22,r23,r31,r32,r33);

   (* compute lengths of each column; these determine grid spacings  *)

   xd := sqrt( r11*r11 + r21*r21 + r31*r31 ) ;
   yd := sqrt( r12*r12 + r22*r22 + r32*r32 ) ;
   zd := sqrt( r13*r13 + r23*r23 + r33*r33 ) ;

   (* if a column length is zero, patch the trouble *)

   if( xd = 0.0 )then begin r11 := 1.0 ; r21 := 0; r31 := 0.0 ; xd := 1.0 ; end;
   if( yd = 0.0 )then begin r22 := 1.0 ; r12 := 0; r32 := 0.0 ; yd := 1.0 ; end;
   if( zd = 0.0 )then begin r33 := 1.0 ; r13 := 0; r23 := 0.0 ; zd := 1.0 ; end;

   (* assign the output lengths *)
   dx := xd;
   dy := yd;
   dz := zd;

   (* normalize the columns *)

   r11 := r11/xd ; r21 := r21/xd ; r31 := r31/xd ;
   r12 := r12/yd ; r22 := r22/yd ; r32 := r32/yd ;
   r13 := r13/zd ; r23 := r23/zd ; r33 := r33/zd ;

   (* At this point, the matrix has normal columns, but we have to allow
      for the fact that the hideous user may not have given us a matrix
      with orthogonal columns.

      So, now find the orthogonal matrix closest to the current matrix.

      One reason for using the polar decomposition to get this
      orthogonal matrix, rather than just directly orthogonalizing
      the columns, is so that inputting the inverse matrix to R
      will result in the inverse orthogonal matrix at this point.
      If we just orthogonalized the columns, this wouldn't necessarily hold. *)
   Q :=  Matrix2D (r11,r12,r13,          // 2D "graphics" matrix
                           r21,r22,r23,
                           r31,r32,r33);


    
   P := nifti_mat33_polar(Q) ;  (* P is orthog matrix closest to Q *)
   FromMatrix(P,r11,r12,r13,r21,r22,r23,r31,r32,r33);

    //ReportMatrix('xxx',Q);
    //ReportMatrix('svd',P);
   (*                            [ r11 r12 r13 ]               *)
   (* at this point, the matrix  [ r21 r22 r23 ] is orthogonal *)
   (*                            [ r31 r32 r33 ]               *)

   (* compute the determinant to determine if it is proper *)

   zd := r11*r22*r33-r11*r32*r23-r21*r12*r33
       +r21*r32*r13+r31*r12*r23-r31*r22*r13 ;  (* should be -1 or 1 *)

   if( zd > 0 )then begin             (* proper *)
     qfac  := 1.0 ;
   end else begin                  (* improper ==> flip 3rd column *)
     qfac := -1.0 ;
     r13 := -r13 ; r23 := -r23 ; r33 := -r33 ;
   end;

   (* now, compute quaternion parameters *)

   a := r11 + r22 + r33 + 1.0;

   if( a > 0.5 ) then begin                (* simplest case *)
     a := 0.5 * sqrt(a) ;
     b := 0.25 * (r32-r23) / a ;
     c := 0.25 * (r13-r31) / a ;
     d := 0.25 * (r21-r12) / a ;
   end else begin                       (* trickier case *)
     xd := 1.0 + r11 - (r22+r33) ;  (* 4*b*b *)
     yd := 1.0 + r22 - (r11+r33) ;  (* 4*c*c *)
     zd := 1.0 + r33 - (r11+r22) ;  (* 4*d*d *)
     if( xd > 1.0 ) then begin
       b := 0.5 * sqrt(xd) ;
       c := 0.25* (r12+r21) / b ;
       d := 0.25* (r13+r31) / b ;
       a := 0.25* (r32-r23) / b ;
     end else if( yd > 1.0 ) then begin
       c := 0.5 * sqrt(yd) ;
       b := 0.25* (r12+r21) / c ;
       d := 0.25* (r23+r32) / c ;
       a := 0.25* (r13-r31) / c ;
     end else begin
       d := 0.5 * sqrt(zd) ;
       b := 0.25* (r13+r31) / d ;
       c := 0.25* (r23+r32) / d ;
       a := 0.25* (r21-r12) / d ;
     end;
     if( a < 0.0 )then begin b:=-b ; c:=-c ; d:=-d; {a:=-a; not used} end;
   end;

   qb := b ;
   qc := c ;
   qd := d ;
end;  //nifti_mat44_to_quatern

// *************************  Vector Operations *************************

  // This procedure defines two-dimensional homogeneous coordinates (x,y,1)
  // as a single 'vector' data element 'u'.  The 'size' of a two-dimensional
  // homogenous vector is 3.


  // This procedure defines three-dimensional homogeneous coordinates
  // (x,y,z,1) as a single 'vector' data element 'u'.  The 'size' of a
  // three-dimensional homogenous vector is 4.
     Function SameVec (const u,v: TVector): boolean;
   begin
       if (u.x=v.x) and (u.y=v.y) and (u.z=v.z) then
          result := true
       else
           result := false;

   end;

  FUNCTION Vector3D  (CONST xValue, yValue, zValue:  DOUBLE):  TVector;
  BEGIN
    WITH RESULT DO
    BEGIN
      x    := xValue;
      y    := yValue;
      z    := zValue;
      h    := 1.0;       // homogeneous coordinate
      size := size3D
    END
  END {Vector3D};


  // AddVectors adds two vectors defined with homogeneous coordinates.
  FUNCTION AddVectors (CONST u,v:  TVector):  TVector;
    VAR
      i: TIndex;
  BEGIN
    IF  (u.size IN [size2D..size3D])  AND
        (v.size IN [size2D..size3D])  AND
        (u.size = v.size)
    THEN BEGIN
      RESULT.size := u.size;
      FOR i := 1 TO u.size-1 DO     {2D + 2D = 2D  or  3D + 3D = 3D}
      BEGIN
        RESULT.vector[i] := u.vector[i] + v.vector[i]
      END;
      RESULT.vector[u.size] := 1.0   {homogeneous coordinate}
    END
    ELSE raise EVectorError.Create('Vector Addition Mismatch')
  END {AddVectors};


// *********************** Basic Matrix Operations **********************

  FUNCTION Matrix2D (CONST m11,m12,m13, m21,m22,m23, m31,m32,m33:  DOUBLE):
                     TMatrix;
  BEGIN
    WITH RESULT DO
    BEGIN
      matrix[1,1] := m11; matrix[1,2] := m12; matrix[1,3] := m13;
      matrix[2,1] := m21; matrix[2,2] := m22; matrix[2,3] := m23;
      matrix[3,1] := m31; matrix[3,2] := m32; matrix[3,3] := m33;
      size := size2D
    END
  END {Matrix2D};


  FUNCTION Matrix3D (CONST m11,m12,m13,m14, m21,m22,m23,m24,
                           m31,m32,m33,m34, m41,m42,m43,m44:  DOUBLE):  TMatrix;
  BEGIN
    WITH RESULT DO
    BEGIN
      matrix[1,1] := m11; matrix[1,2] := m12;
      matrix[1,3] := m13; matrix[1,4] := m14;

      matrix[2,1] := m21; matrix[2,2] := m22;
      matrix[2,3] := m23; matrix[2,4] := m24;

      matrix[3,1] := m31; matrix[3,2] := m32;
      matrix[3,3] := m33; matrix[3,4] := m34;

      matrix[4,1] := m41; matrix[4,2] := m42;
      matrix[4,3] := m43; matrix[4,4] := m44;
      size := size3D
    END
  END {Matrix3D};


  // Compound geometric transformation matrices can be formed by multiplying
  // simple transformation matrices.  This procedure only multiplies together
  // matrices for two- or three-dimensional transformations, i.e., 3x3 or 4x4
  // matrices.  The multiplier and multiplicand must be of the same dimension.
 FUNCTION MultiplyMatrices (CONST a,b:  TMatrix):  TMatrix;
    VAR
      i,j,k:  TIndex;
      temp :  DOUBLE;
  BEGIN
	RESULT.size := a.size;
    IF  a.size = b.size
    THEN

      FOR i := 1 TO a.size DO
      BEGIN
        FOR j := 1 TO a.size DO
        BEGIN

          temp := 0.0;
          FOR k := 1 TO a.size DO
          BEGIN
            temp := temp + a.matrix[i,k]*b.matrix[k,j];
          END;
          RESULT.matrix[i,j] := Defuzz(temp)

        END
      END
{$IFDEF GUI}
	ELSE Showmessage('MultiplyMatricesError'+inttostr(a.size)+'x'+inttostr(b.size));
{$ELSE}
        else writeln('MultiplyMatricesError'+inttostr(a.size)+'x'+inttostr(b.size));
{$ENDIF}
      
    //ELSE EMatrixError.Create('MultiplyMatrices error')
  END {MultiplyMatrices};

PROCEDURE lubksb(a: {glnpbynp}TMatrix; n: integer; indx: TIntVector; VAR b: TVector);
VAR
   j,ip,ii,i: integer;
   sum: double;
BEGIN
   ii := 0;
   FOR i := 1 TO n DO BEGIN
      ip := indx.vector[i];
      sum := b.vector[ip];
      b.vector[ip] := b.vector[i];
      IF  (ii <> 0) THEN BEGIN
         FOR j := ii TO i-1 DO BEGIN
            sum := sum-a.matrix[i,j]*b.vector[j]
         END
      END ELSE IF (sum <> 0.0) THEN BEGIN
         ii := i
      END;
      b.vector[i] := sum
   END;
   FOR i := n DOWNTO 1 DO BEGIN
      sum := b.vector[i];
      IF (i < n) THEN BEGIN
         FOR j := i+1 TO n DO BEGIN
            sum := sum-a.matrix[i,j]*b.vector[j]
         END
      END;
      b.vector[i] := sum/a.matrix[i,i]
   END
end;

  PROCEDURE ludcmp(VAR a: TMatrix;  n: integer;
       VAR indx: TIntVector; VAR d: double);
CONST
   tiny=1.0e-20;
VAR
   k,j,imax,i: integer;
   sum,dum,big: real;
   vv: TVector;
BEGIN
   d := 1.0;
   FOR i := 1 TO n DO BEGIN
      big := 0.0;
      FOR j := 1 TO n DO IF (abs(a.matrix[i,j]) > big) THEN big := abs(a.matrix[i,j]);
      IF (big = 0.0) THEN BEGIN
         writeln('pause in LUDCMP - singular matrix'); readln
      END;
      vv.vector[i] := 1.0/big
   END;
   FOR j := 1 TO n DO BEGIN
      FOR i := 1 TO j-1 DO BEGIN
         sum := a.matrix[i,j];
         FOR k := 1 TO i-1 DO BEGIN
            sum := sum-a.matrix[i,k]*a.matrix[k,j]
         END;
         a.matrix[i,j] := sum
      END;
      big := 0.0;
      FOR i := j TO n DO BEGIN
         sum := a.matrix[i,j];
         FOR k := 1 TO j-1 DO BEGIN
            sum := sum-a.matrix[i,k]*a.matrix[k,j]
         END;
         a.matrix[i,j] := sum;
         dum := vv.vector[i]*abs(sum);
         IF (dum > big) THEN BEGIN
            big := dum;
            imax := i
         END
      END;
      IF (j <> imax) THEN BEGIN
         FOR k := 1 TO n DO BEGIN
            dum := a.matrix[imax,k];
            a.matrix[imax,k] := a.matrix[j,k];
            a.matrix[j,k] := dum
         END;
         d := -d;
         vv.vector[imax] := vv.vector[j]
      END;
      indx.vector[j] := imax;
      IF (a.matrix[j,j] = 0.0) THEN a.matrix[j,j] := tiny;
      IF (j <> n) THEN BEGIN
         dum := 1.0/a.matrix[j,j];
         FOR i := j+1 TO n DO BEGIN
            a.matrix[i,j] := a.matrix[i,j]*dum
         END
      END
   END;
END;

 FUNCTION InvertMatrix3D  (CONST Input:TMatrix):  TMatrix;
 var
    n,i,j: integer;
    d: double;
    indx: tIntVector;
    col: tvector;
    a,y: TMatrix;
 begin
 a:= Input;
 n := 3;
 y.size := size3D;
 ludcmp(a,n,indx,d);
 for j := 1 to n do begin
     for i := 1 to n do col.vector[i] := 0;
     col.vector[j] := 1.0;
     lubksb(a,n,indx,col);
     for i := 1 to n do y.matrix[i,j] := col.vector[i];
 end;
 result := y;
 end;

  // This procedure inverts a general transformation matrix.  The user need
  // not form an inverse geometric transformation by keeping a product of
  // the inverses of simple geometric transformations:  translations, rotations
  // and scaling.  A determinant of zero indicates no inverse is possible for
  // a singular matrix.
  FUNCTION InvertMatrix  (CONST a,b:  TMatrix; VAR determinant:  DOUBLE):  TMatrix;
    VAR
      c        :  TMatrix;
      i,i_pivot:  TIndex;
      i_flag   :  ARRAY[TIndex] OF BOOLEAN;
      j,j_pivot:  TIndex;
      j_flag   :  ARRAY[TIndex] OF BOOLEAN;
      modulus  :  DOUBLE;
      n        :  TIndex;
      pivot    :  DOUBLE;
      pivot_col:  ARRAY[TIndex] OF TIndex;
      pivot_row:  ARRAY[TIndex] OF TIndex;
      temporary:  DOUBLE;
  BEGIN
    c := a;                         // The matrix inversion algorithm used here
    WITH c DO                       // is similar to the "maximum pivot strategy"
    BEGIN                           // described in "Applied Numerical Methods"
      FOR i := 1 TO size DO         // by Carnahan, Luther and Wilkes,
      BEGIN                         // pp. 282-284.
        i_flag[i] := TRUE;
        j_flag[i] := TRUE
      END;
      modulus := 1.0;
      i_pivot := 1;  // avoid initialization warning
      j_pivot := 1;  // avoid initialization warning

      FOR n := 1 TO size DO
      BEGIN
        pivot := 0.0;
        IF   ABS(modulus) > 0.0
        THEN BEGIN
          FOR i := 1 TO size DO
            IF  i_flag[i]
            THEN

              FOR j := 1 TO size DO
                IF   j_flag[j]
                THEN
                  IF   ABS(matrix[i,j]) > ABS(pivot)
                  THEN BEGIN
                    pivot := matrix[i,j];   // largest value on which to pivot
                    i_pivot := i;           // indices of pivot element
                    j_pivot := j
                  END;

          IF   Defuzz(pivot) = 0    // If pivot is too small, consider
          THEN modulus := 0         // the matrix to be singular
          ELSE BEGIN
            pivot_row[n] := i_pivot;
            pivot_col[n] := j_pivot;
            i_flag[i_pivot] := FALSE;
            j_flag[j_pivot] := FALSE;
            FOR i := 1 TO size DO
              IF   i <> i_pivot
              THEN
                FOR j := 1 TO size DO  // pivot column unchanged for elements
                  IF   j <> j_pivot    // not in pivot row or column ...
                  THEN matrix[i,j] := (matrix[i,j]*matrix[i_pivot,j_pivot] -
                                    matrix[i_pivot,j]*matrix[i,j_pivot])
                                    / modulus;  // 2x2 minor / modulus
            FOR j := 1 TO size DO
              IF   j <> j_pivot        // change signs of elements in pivot row
              THEN matrix[i_pivot,j] := -matrix[i_pivot,j];
            temporary := modulus;      // exchange pivot element and modulus
            modulus := matrix[i_pivot,j_pivot];
            matrix[i_pivot,j_pivot] := temporary
          END
        END
      END {FOR n}
    END {WITH};
    determinant := Defuzz(modulus);
    IF  determinant <> 0
    THEN BEGIN
      RESULT.size := c.size;       // The matrix inverse must be unscrambled
      FOR i := 1 TO c.size DO      // if pivoting was not along main diagonal.
        FOR j := 1 TO c.size DO
          RESULT.matrix[pivot_row[i],pivot_col[j]] := Defuzz(c.matrix[i,j]/determinant)
    END
    ELSE EMatrixError.Create('InvertMatrix error')

  END {InvertMatrix};


// ***********************  Transformation Matrices  ********************


  // This procedure defines a matrix for a two- or three-dimensional rotation.
  // To avoid possible confusion in the sense of the rotation, 'rotateClockwise'
  // or 'roCounterlcockwise' must always be specified along with the axis
  // of rotation. Two-dimensional rotations are assumed to be about the z-axis
  // in the x-y plane.
  //
  // A rotation about an arbitrary axis can be performed with the following
  // steps:
  //   (1) Translate the object into a new coordinate system where (x,y,z)
  //       maps into the origin (0,0,0).
  //   (2) Perform appropriate rotations about the x and y axes of the
  //       coordinate system so that the unit vector (a,b,c) is mapped into
  //       the unit vector along the z axis.
  //   (3) Perform the desired rotation about the z-axis of the new
  //       coordinate system.
  //   (4) Apply the inverse of step (2).
  //   (5) Apply the inverse of step (1).
  FUNCTION RotateMatrix     (CONST dimension:  TDimension;
                             CONST xyz      :  TAxis;
                             CONST angle    :  DOUBLE;
                             CONST rotation :  Trotation):  TMatrix;
    VAR
      cosx     :  DOUBLE;
      sinx     :  DOUBLE;
      TempAngle:  DOUBLE;

  BEGIN
    TempAngle := angle;  // Use TempAngle since "angle" is CONST parameter

    IF  rotation = rotateCounterClockwise
    THEN TempAngle := -TempAngle;

    cosx := Defuzz( COS(TempAngle) );
    sinx := Defuzz( SIN(TempAngle) );

    CASE dimension OF
      dimen2D:
        CASE xyz OF
          axisX,axisY:  EMatrixError.Create('Invalid 2D rotation matrix.  Specify axisZ');

          axisZ:  RESULT := Matrix2D ( cosx, -sinx,     0,
                                       sinx,  cosx,     0,
                                          0,     0,     1)
        END;

      dimen3D:
        CASE xyz OF
          axisX:  RESULT := Matrix3D (    1,     0,     0, 0,
                                          0,  cosx, -sinx, 0,
                                          0,  sinx,  cosx, 0,
                                          0,     0,     0, 1);

          axisY:  RESULT := Matrix3D ( cosx,     0,  sinx, 0,
                                          0,     1,     0, 0,
                                      -sinx,     0,  cosx, 0,
                                          0,     0,     0, 1);

          axisZ:  RESULT := Matrix3D ( cosx, -sinx,     0, 0,
                                       sinx,  cosx,     0, 0,
                                          0,     0,     1, 0,
                                          0,     0,     0, 1);
        END
    END
  END {RotateMatrix};


  // 'ScaleMatrix' accepts a 'vector' containing the scaling factors for
  //  each of the dimensions and creates a scaling matrix.  The size
  //  of the vector dictates the size of the resulting matrix.
  FUNCTION ScaleMatrix      (CONST s:  TVector):  TMatrix;
  BEGIN
    CASE s.size OF
      size2D: RESULT := Matrix2D (s.x,   0,   0,
                                    0, s.y,   0,
                                    0,   0,   1);

      size3D: RESULT := Matrix3D (s.x,   0,   0,  0,
                                    0, s.y,   0,  0,
                                    0,   0, s.z,  0,
                                    0,   0,   0,  1)
    END
  END {ScaleMatrix};
  // 'TranslateMatrix' defines a translation transformation matrix.  The
  // components of the vector 't' determine the translation components.
  // (Note:  'Translate' here is from kinematics in physics.)
  FUNCTION TranslateMatrix  (CONST t:  TVector):  TMatrix;
  BEGIN
    CASE t.size OF
      size2D: RESULT := Matrix2D (  1,   0, 0,
                                    0,   1, 0,
                                  t.x, t.y, 1);

      size3D: RESULT := Matrix3D (  1,   0,   0,  0,
                                    0,   1,   0,  0,
                                    0,   0,   1,  0,
                                  t.x, t.y, t.z,  1)
    END
  END {TranslateMatrix};
  // 'ViewTransformMatrix' creates a transformation matrix for changing
  // from world coordinates to eye coordinates. The location of the 'eye'
  // from the 'object' is given in spherical (azimuth,elevation,distance)
  // coordinates or Cartesian (x,y,z) coordinates.  The size of the screen
  // is 'ScreenX' units horizontally and 'ScreenY' units vertically.  The
  // eye is 'ScreenDistance' units from the viewing screen.  A large ratio
  // 'ScreenDistance/ScreenX (or ScreenY)' specifies a narrow aperature
  // -- a telephoto view.  Conversely, a small ratio specifies a large
  // aperature -- a wide-angle view.  This view transform matrix is very
  // useful as the default three-dimensional transformation matrix.  Once
  // set, all points are automatically transformed.
  FUNCTION ViewTransformMatrix (CONST coordinate:  TCoordinate;
       CONST azimuth {or x}, elevation {or y}, distance {or z}:  DOUBLE;
       CONST ScreenX, ScreenY, ScreenDistance:  DOUBLE):  TMatrix;

    CONST
      HalfPI   =  PI / 2.0;

    VAR
      a         :  TMatrix;
      b         :  TMatrix;
      cosm      :  DOUBLE;        // COS(-angle)
      hypotenuse:  DOUBLE;
      sinm      :  DOUBLE;        // SIN(-angle)
      temporary :  DOUBLE;
      u         :  TVector;
      x         :  DOUBLE  ABSOLUTE azimuth;     // x and azimuth are synonyms
      y         :  DOUBLE  ABSOLUTE elevation;   // synonyms
      z         :  DOUBLE  ABSOLUTE distance;    // synonyms

  BEGIN
    CASE coordinate OF
      coordCartesian:  u := Vector3D (-x, -y, -z);

      coordSpherical:
        BEGIN
          temporary := -distance * COS(elevation);
          u := Vector3D (temporary * COS(azimuth - HalfPI),
                         temporary * SIN(azimuth - HalfPI),
                        -distance  * SIN(elevation));
        END
    END;
    a := TranslateMatrix(u);      // translate origin to 'eye'
    b := RotateMatrix (dimen3D, axisX, HalfPI, rotateClockwise);
    a := MultiplyMatrices(a,b);

    CASE coordinate OF
      coordCartesian:
        BEGIN
          temporary := SQR(x) + SQR(y);
          hypotenuse := SQRT(temporary);
          if hypotenuse <> 0 then begin
          cosm := -y/hypotenuse;
          sinm :=  x/hypotenuse;
          end else begin
              cosm := 1;//abba
              sinm := 0;
          end;

          b := Matrix3D ( cosm, 0, sinm, 0,
                             0, 1,    0, 0,
                         -sinm, 0, cosm, 0,
                             0, 0,    0, 1);

          a := MultiplyMatrices (a,b);
          cosm := hypotenuse;
          hypotenuse := SQRT(temporary + SQR(z));
          cosm := cosm/hypotenuse;
          sinm := -z/hypotenuse;

          b := Matrix3D (    1,    0,     0,  0,
                             0, cosm, -sinm,  0,
                             0, sinm,  cosm,  0,
                             0,    0,     0,  1)
        END;
      coordSpherical:
        BEGIN
          b := RotateMatrix (dimen3D,axisY,-azimuth,rotateCounterClockwise);
          a := MultiplyMatrices(a,b);
          b := RotateMatrix (dimen3D,axisX,elevation,rotateCounterClockwise);
        END
    END {CASE};

    a := MultiplyMatrices (a,b);
    u := Vector3D (ScreenDistance/(0.5*ScreenX),
              ScreenDistance/(0.5*ScreenY),-1.0);
    b := ScaleMatrix (u);  // reverse sense of z-axis; screen transformation

    RESULT := MultiplyMatrices (a,b);

  END {ViewTransformMatrix};

// ***************************   Conversions   **************************
  // This function converts the vector parameter from Cartesian
  // coordinates to the specified type of coordinates.
  FUNCTION FromCartesian (CONST ToCoordinate:  TCoordinate; CONST u:  TVector):  TVector;
    VAR
      phi  :  DOUBLE;
      r    :  DOUBLE;
      temp :  DOUBLE;
      theta:  DOUBLE;

  BEGIN
    IF  ToCoordinate = coordCartesian
    THEN RESULT := u
    ELSE BEGIN
      RESULT.size := u.size;

      IF   (u.size = size3D) AND
           (ToCoordinate = coordSpherical)
      THEN BEGIN                    // spherical 3D
        temp := SQR(u.x)+SQR(u.y);  // (x,y,z) -> (r,theta,phi)
        r := SQRT(temp+SQR(u.z));
        IF   Defuzz(u.x) = 0.0
        THEN theta := PI/4
        ELSE theta := ARCTAN(u.y/u.x);
        IF   Defuzz(u.z) = 0.0
        THEN phi := PI/4
        ELSE phi := ARCTAN(SQRT(temp)/u.z);
        RESULT.x := r;
        RESULT.y := theta;
        RESULT.z := phi
      END
      ELSE BEGIN              // cylindrical 2D/3D or spherical 2D
                              // (x,y) -> (r,theta)  or  (x,y,z) -> (r,theta,z)
        r := SQRT( SQR(u.x) + SQR(u.y) );
        IF   Defuzz(u.x) = 0.0
        THEN theta := PI/4
        ELSE theta := ARCTAN(u.y/u.x);
        RESULT.x := r;
        RESULT.y := theta
      END

    END
  END {FromCartesian};


  // This function converts the vector parameter from specified coordinates
  // into Cartesian coordinates.
  FUNCTION ToCartesian   (CONST FromCoordinate:  TCoordinate; CONST u:  TVector):  TVector;
    VAR
      phi   :  DOUBLE;
      r     :  DOUBLE;
      sinphi:  DOUBLE;
      theta :  DOUBLE;

  BEGIN
    RESULT := u;

    IF  FromCoordinate = coordCartesian
    THEN RESULT := u
    ELSE BEGIN
      RESULT.size := u.size;

      IF   (u.size = size3D) AND
           (FromCoordinate = coordSpherical)
      THEN BEGIN       // spherical 3D
        r :=  u.x;     //  (r,theta,phi) -> (x,y,z)
        theta := u.y;
        phi := u.z;
        sinphi := SIN(phi);
        RESULT.x := r * COS(theta) * sinphi;
        RESULT.y := r * SIN(theta) * sinphi;
        RESULT.z := r * COS(phi)
      END
      ELSE BEGIN       // cylindrical 2D/3D or spherical 2D
        r :=  u.x;     // (r,theta) -> (x,y)  or  (r,theta,z) -> (x,y,z)
        theta := u.y;
        RESULT.x := r * COS(theta);
        RESULT.y := r * SIN(theta)
      END
    END
  END {ToCartesian};




  // Convert angle in degrees to radians.
  FUNCTION ToRadians (CONST angle:  DOUBLE):  DOUBLE;
  BEGIN
    RESULT := PI/180.0 * angle
  END; {ToRadians}


// ***************************  Miscellaneous  **************************

  // 'Defuzz' is used for comparisons and to avoid propagation of 'fuzzy',
  //  nearly-zero values.  DOUBLE calculations often result in 'fuzzy' values.
  //  The term 'fuzz' was adapted from the APL language.
 FUNCTION  Defuzz(CONST x:  DOUBLE):  DOUBLE;
  BEGIN
    IF  ABS(x) < fuzz
    THEN RESULT := 0.0
    ELSE RESULT := x
  END {Defuzz};


INITIALIZATION
 fuzz := 1.0E-6;

END. {GraphicsMath UNIT}