File: test.cpp

package info (click to toggle)
mrpt 1%3A2.5.8%2Bds-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 87,448 kB
  • sloc: cpp: 551,662; ansic: 38,702; xml: 3,914; python: 2,547; sh: 404; makefile: 237
file content (144 lines) | stat: -rw-r--r-- 4,664 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
/* +------------------------------------------------------------------------+
   |                     Mobile Robot Programming Toolkit (MRPT)            |
   |                          https://www.mrpt.org/                         |
   |                                                                        |
   | Copyright (c) 2005-2023, Individual contributors, see AUTHORS file     |
   | See: https://www.mrpt.org/Authors - All rights reserved.               |
   | Released under BSD License. See: https://www.mrpt.org/License          |
   +------------------------------------------------------------------------+ */

#include <mrpt/bayes/CParticleFilterCapable.h>
#include <mrpt/io/vector_loadsave.h>
#include <mrpt/math/data_utils.h>
#include <mrpt/math/ops_vectors.h>
#include <mrpt/math/utils.h>
#include <mrpt/random.h>
#include <mrpt/system/filesystem.h>

#include <iostream>
#include <map>

using namespace mrpt::bayes;
using namespace mrpt::math;
using namespace mrpt::random;
using namespace mrpt::system;
using namespace mrpt::io;
using namespace std;

double MIN_LOG_WEIG = -1.0;

unsigned int N_TESTS = 500;
int N_PARTICLES = 100;

// For batch experiment:
CVectorDouble min_log_ws;
map<string, CVectorDouble> results;

// vectorToTextFile( out_indxs, #ALGOR, true, true); /* By rows, append */

#define TEST_RESAMPLING(ALGOR)                                                 \
	mrpt::system::deleteFile(#ALGOR);                                          \
	/*printf(#ALGOR);*/                                                        \
	/*printf("\n");*/                                                          \
	ERR_MEANs.clear();                                                         \
	ERR_STDs.clear();                                                          \
	for (size_t i = 0; i < N_TESTS; i++)                                       \
	{                                                                          \
		mrpt::random::getRandomGenerator().drawUniformVector(                  \
			log_ws, MIN_LOG_WEIG, 0.0);                                        \
		CParticleFilterCapable::log2linearWeights(log_ws, lin_ws);             \
		CParticleFilterCapable::computeResampling(                             \
			CParticleFilter::ALGOR, log_ws, out_indxs);                        \
		hist_parts = mrpt::math::histogram(out_indxs, 0, M - 1, M, true);      \
		vector<double> errs_hist = lin_ws - hist_parts;                        \
		ERR_MEANs.push_back(mrpt::math::mean(errs_hist));                      \
		ERR_STDs.push_back(mrpt::math::stddev(errs_hist));                     \
	}                                                                          \
	printf("%s: ERR_MEAN %e\n", #ALGOR, mrpt::math::mean(ERR_MEANs));          \
	printf("%s: ERR_STD %f\n", #ALGOR, mrpt::math::mean(ERR_STDs));            \
	results[#ALGOR].push_back(mrpt::math::mean(ERR_STDs));

// ------------------------------------------------------
//                  TestResampling
// ------------------------------------------------------
void TestResampling()
{
	vector<double> log_ws;
	std::vector<size_t> out_indxs;

	const size_t M = N_PARTICLES;

	log_ws.resize(M);
	// vectorToTextFile( log_ws, "log_ws.txt");

	// Compute normalized linear weights:
	vector<double> lin_ws;
	vector<double> hist_parts;
	vector<double> ERR_MEANs;
	vector<double> ERR_STDs;

	// prMultinomial
	TEST_RESAMPLING(prMultinomial)
	// prResidual
	TEST_RESAMPLING(prResidual)
	// prStratified
	TEST_RESAMPLING(prStratified)
	// prSystematic
	TEST_RESAMPLING(prSystematic)
}

void TestBatch()
{
	for (double LL = -2; LL <= 2.01; LL += 0.08)
	{
		double L = pow(10.0, LL);

		min_log_ws.push_back(L);
		printf("MIN_LOG_W=%f\n", L);

		MIN_LOG_WEIG = L;
		TestResampling();
	}

	// Save results to files:
	CVectorDouble R;

	vectorToTextFile(min_log_ws, "min_log_ws.txt");

	R = results["prMultinomial"];
	vectorToTextFile(R, "prMultinomial.txt");
	R = results["prResidual"];
	vectorToTextFile(R, "prResidual.txt");
	R = results["prStratified"];
	vectorToTextFile(R, "prStratified.txt");
	R = results["prSystematic"];
	vectorToTextFile(R, "prSystematic.txt");
}

// ------------------------------------------------------
//                        MAIN
// ------------------------------------------------------
int main(int argc, char** argv)
{
	try
	{
		getRandomGenerator().randomize();

		if (argc > 1) N_PARTICLES = atoi(argv[1]);

		// TestResampling();
		TestBatch();

		return 0;
	}
	catch (exception& e)
	{
		std::cerr << "MRPT error: " << mrpt::exception_to_str(e) << std::endl;
		return -1;
	}
	catch (...)
	{
		cerr << "Untyped excepcion!!";
		return -1;
	}
}