1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
|
/* +------------------------------------------------------------------------+
| Mobile Robot Programming Toolkit (MRPT) |
| https://www.mrpt.org/ |
| |
| Copyright (c) 2005-2023, Individual contributors, see AUTHORS file |
| See: https://www.mrpt.org/Authors - All rights reserved. |
| Released under BSD License. See: https://www.mrpt.org/License |
+------------------------------------------------------------------------+ */
#include <mrpt/graphs/CNetworkOfPoses.h>
#include <mrpt/graphs/dijkstra.h>
#include <mrpt/gui/CDisplayWindowPlots.h>
#include <mrpt/random.h>
#include <mrpt/system/CTicTac.h>
#include <iostream>
#include <map>
using namespace mrpt;
using namespace mrpt::graphs;
using namespace mrpt::poses;
using namespace mrpt::math;
using namespace mrpt::gui;
using namespace mrpt::random;
using namespace mrpt::system;
using namespace std;
// The type of my Dijkstra problem:
// (See other options in mrpt::poses::CNetworkOfPoses<>)
using CMyDijkstra = mrpt::graphs::CDijkstra<CNetworkOfPoses2D>;
// adds a new edge to the graph. The edge is annotated with the relative
// position of the two nodes
static void addEdge(
TNodeID from, TNodeID to, const std::map<TNodeID, CPose2D>& real_poses,
CNetworkOfPoses2D& graph_links)
{
CPose2D p = real_poses.find(to)->second - real_poses.find(from)->second;
graph_links.insertEdge(from, to, p);
}
// weight is the distance between two nodes.
double myDijkstraWeight(
const CMyDijkstra::graph_t& g, const TNodeID from, const TNodeID to,
const CMyDijkstra::edge_t& edge)
{
// return 1; // Topological distance
return edge.norm(); // Metric distance
}
// ------------------------------------------------------
// TestDijkstra
// ------------------------------------------------------
void TestDijkstra()
{
CTicTac tictac;
CNetworkOfPoses2D graph_links;
CNetworkOfPoses2D::global_poses_t optimal_poses, optimal_poses_dijkstra;
std::map<TNodeID, CPose2D> real_poses;
getRandomGenerator().randomize(10);
// ----------------------------
// Create a random graph:
// ----------------------------
const size_t N_VERTEX = 20;
const double DIST_THRES = 10;
const double NODES_XY_MAX = 15;
vector<double> xs, ys;
for (size_t j = 0; j < N_VERTEX; j++)
{
CPose2D p(
getRandomGenerator().drawUniform(-NODES_XY_MAX, NODES_XY_MAX),
getRandomGenerator().drawUniform(-NODES_XY_MAX, NODES_XY_MAX),
getRandomGenerator().drawUniform(-M_PI, M_PI));
real_poses[j] = p;
// for the figure:
xs.push_back(p.x());
ys.push_back(p.y());
}
// Add some edges
for (size_t i = 0; i < N_VERTEX; i++)
{
for (size_t j = 0; j < N_VERTEX; j++)
{
if (i == j) continue;
if (real_poses[i].distanceTo(real_poses[j]) < DIST_THRES)
addEdge(i, j, real_poses, graph_links);
}
}
// ----------------------------
// Dijkstra
// ----------------------------
tictac.Tic();
const size_t SOURCE_NODE = 0;
#if 0
const size_t maxTopoDistance = 35; // according to myDijkstraWeight()
#else
const size_t maxTopoDistance = std::numeric_limits<size_t>::max();
#endif
CMyDijkstra myDijkstra(
graph_links, SOURCE_NODE, &myDijkstraWeight, {}, maxTopoDistance);
cout << "Dijkstra took " << tictac.Tac() * 1e3 << " ms for "
<< graph_links.edges.size() << " edges." << endl;
// Demo of getting the tree representation of
// the graph & visit its nodes:
// ---------------------------------------------------------
const CMyDijkstra::tree_graph_t graphAsTree = myDijkstra.getTreeGraph();
// Text representation of the tree:
cout << "TREE:\n" << graphAsTree.getAsTextDescription() << endl;
auto lmb = [&]([[maybe_unused]] const TNodeID parent,
const CMyDijkstra::tree_graph_t::TEdgeInfo& edge_to_child,
const size_t depth_level) {
cout << string(depth_level * 3, ' ');
cout << edge_to_child.id << endl;
};
cout << "Depth-first traverse of graph:\n";
cout << SOURCE_NODE << endl;
graphAsTree.visitDepthFirst(SOURCE_NODE, lmb);
cout << endl << "Breadth-first traverse of graph:\n";
cout << SOURCE_NODE << endl;
graphAsTree.visitBreadthFirst(SOURCE_NODE, lmb);
// ----------------------------
// Display results graphically:
// ----------------------------
CDisplayWindowPlots win("Dijkstra example");
win.hold_on();
win.axis_equal();
for (TNodeID i = 0; i < N_VERTEX && win.isOpen(); i++)
{
if (i == SOURCE_NODE) continue;
const auto dist = myDijkstra.getNodeDistanceToRoot(i);
if (!dist.has_value())
{
cout << "to " << i << "-> no path found.\n";
continue;
}
const CMyDijkstra::edge_list_t path = myDijkstra.getShortestPathTo(i);
cout << "to " << i << " -> #steps= " << path.size()
<< " distance=" << dist.value() << endl;
win.setWindowTitle(format(
"Dijkstra path %u->%u", static_cast<unsigned int>(SOURCE_NODE),
static_cast<unsigned int>(i)));
win.clf();
// plot all edges:
for (CNetworkOfPoses2D::iterator e = graph_links.begin();
e != graph_links.end(); ++e)
{
const CPose2D& p1 = real_poses[e->first.first];
const CPose2D& p2 = real_poses[e->first.second];
vector<double> X(2);
vector<double> Y(2);
X[0] = p1.x();
Y[0] = p1.y();
X[1] = p2.x();
Y[1] = p2.y();
win.plot(X, Y, "k1");
}
// Draw the shortest path:
for (CMyDijkstra::edge_list_t::const_iterator a = path.begin();
a != path.end(); ++a)
{
const CPose2D& p1 = real_poses[a->first];
const CPose2D& p2 = real_poses[a->second];
vector<double> X(2);
vector<double> Y(2);
X[0] = p1.x();
Y[0] = p1.y();
X[1] = p2.x();
Y[1] = p2.y();
win.plot(X, Y, "g3");
}
// Draw All nodes:
win.plot(xs, ys, ".b7");
win.axis_fit(true);
cout << "Press any key to show next shortest path, close window to "
"end...\n";
win.waitForKey();
}
win.clear();
}
int main()
{
try
{
TestDijkstra();
return 0;
}
catch (exception& e)
{
cout << "MRPT exception caught: " << e.what() << endl;
return -1;
}
catch (...)
{
printf("Another exception!!");
return -1;
}
}
|