File: quaternion.h

package info (click to toggle)
mrtrix 0.2.12-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 5,980 kB
  • ctags: 4,172
  • sloc: cpp: 26,485; python: 913; xml: 39; makefile: 22; sh: 10
file content (170 lines) | stat: -rw-r--r-- 5,624 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
/*
    Copyright 2008 Brain Research Institute, Melbourne, Australia

    Written by J-Donald Tournier, 27/06/08.

    This file is part of MRtrix.

    MRtrix is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    MRtrix is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with MRtrix.  If not, see <http://www.gnu.org/licenses/>.


    04-07-2008 J-Donald Tournier <d.tournier@brain.org.au>
    * test for rounding errors in Quaternion::from_matrix().
      In certain cases, a negative number was passed to sqrt()

*/

#ifndef __quaternion_h__
#define __quaternion_h__

#include "mrtrix.h"

namespace MR {
  namespace Math {

    class Quaternion {
      protected:
        float   x[4];

      public:
        Quaternion () { x[0] = 1.0; x[1] = x[2] = x[3] = 0.0; }
        Quaternion (float t, float vx, float vy, float vz) { x[0] = t; x[1] = vx; x[2] = vy; x[3] = vz; }
        Quaternion (float b, float c, float d) { x[0] = sqrt(1.0 - b*b - c*c - d*d); x[1] = b; x[2] = c; x[3] = d; }
        Quaternion (float angle, float* axis)
        {
          x[0] = cos (angle/2.0); x[1] = axis[0]; x[2] = axis[1]; x[3] = axis[2]; 
          float norm = sin (angle/2.0) / sqrt (x[1]*x[1] + x[2]*x[2] + x[3]*x[3]);
          x[1] *= norm; x[2] *= norm; x[3] *= norm;
        }
        Quaternion (const float* matrix)             { from_matrix (matrix); }

        operator bool () const   { return (!(gsl_isnan (x[0]) || gsl_isnan (x[1]) || gsl_isnan (x[2]) || gsl_isnan (x[3]))); }
        bool          operator! () const   { return (gsl_isnan (x[0]) || gsl_isnan (x[1]) || gsl_isnan (x[2]) || gsl_isnan (x[3])); }

        void          invalidate ()  { x[0] = x[1] = x[2] = x[3] = GSL_NAN; }
        void          normalise ()
        {
          float n = 1.0 / sqrt (x[0]*x[0] + x[1]*x[1] + x[2]*x[2] + x[3]*x[3]);
          x[0] *= n; x[1] *= n; x[2] *= n; x[3] *= n;
        }
        void          from_matrix (const float* matrix);
        void          to_matrix (float* matrix);

        const float&  operator[] (int index) const    { return (x[index]); }
        float&        operator[] (int index)          { return (x[index]); }

        bool          operator== (const Quaternion& y) const { return (memcmp (x, y.x, 4*sizeof(float)) == 0); }
        bool          operator!= (const Quaternion& y) const { return (memcmp (x, y.x, 4*sizeof(float))); }

        Quaternion    operator* (const Quaternion& y) const;
        const Quaternion& operator*= (const Quaternion& y) { *this = (*this) * y; return (*this); }

    };


    std::ostream& operator<< (std::ostream& stream, const Quaternion& q);













    inline Quaternion Quaternion::operator* (const Quaternion& y) const
    {
      Quaternion q (
          x[0]*y[0] - x[1]*y[1] - x[2]*y[2] - x[3]*y[3],
          x[0]*y[1] + x[1]*y[0] + x[2]*y[3] - x[3]*y[2],
          x[0]*y[2] - x[1]*y[3] + x[2]*y[0] + x[3]*y[1],
          x[0]*y[3] + x[1]*y[2] - x[2]*y[1] + x[3]*y[0] );
      q.normalise();
      return (q);
    }






    inline void Quaternion::from_matrix (const float* matrix)
    {
      x[0] = 1.0 + matrix[0] + matrix[4] + matrix[8];
      x[0] = x[0] > 0.0 ? 0.5 * sqrt (x[0]) : 0.0;
      if (fabs (x[0]) < 0.1) {
        x[1] = 1.0 + matrix[0] - matrix[4] - matrix[8];
        x[1] = x[1] > 0.0 ? 0.5 * sqrt (x[1]) : 0.0;
        if (fabs (x[1]) < 0.1) {
          x[2] = 1.0 - matrix[0] + matrix[4] - matrix[8];
          x[2] = x[2] > 0.0 ? 0.5 * sqrt (x[2]) : 0.0;
          if (fabs (x[2]) < 0.1) {
            x[3] = 0.5 * sqrt (1.0 - matrix[0] - matrix[4] + matrix[8]);
            x[0] = (matrix[3] - matrix[1]) / (4.0 * x[3]);
            x[1] = (matrix[2] + matrix[6]) / (4.0 * x[3]);
            x[2] = (matrix[7] + matrix[5]) / (4.0 * x[3]);
          }
          else {
            x[0] = (matrix[2] - matrix[6]) / (4.0 * x[2]);
            x[1] = (matrix[3] + matrix[1]) / (4.0 * x[2]);
            x[3] = (matrix[7] + matrix[5]) / (4.0 * x[2]);
          }
        }
        else {
          x[0] = (matrix[7] - matrix[5]) / (4.0 * x[1]);
          x[2] = (matrix[3] + matrix[1]) / (4.0 * x[1]);
          x[3] = (matrix[2] + matrix[6]) / (4.0 * x[1]);
        }
      }
      else {
        x[1] = (matrix[7] - matrix[5]) / (4.0 * x[0]);
        x[2] = (matrix[2] - matrix[6]) / (4.0 * x[0]);
        x[3] = (matrix[3] - matrix[1]) / (4.0 * x[0]);
      }

      normalise();
    }


    inline void Quaternion::to_matrix (float* matrix)
    {
      matrix[0] = x[0]*x[0] + x[1]*x[1] - x[2]*x[2] - x[3]*x[3];
      matrix[1] = 2.0*x[1]*x[2] - 2.0*x[0]*x[3]; 
      matrix[2] = 2.0*x[1]*x[3] + 2.0*x[0]*x[2];
      matrix[3] = 2.0*x[1]*x[2] + 2.0*x[0]*x[3];
      matrix[4] = x[0]*x[0] + x[2]*x[2] - x[1]*x[1] - x[3]*x[3];
      matrix[5] = 2.0*x[2]*x[3] - 2.0*x[0]*x[1];
      matrix[6] = 2.0*x[1]*x[3] - 2.0*x[0]*x[2];
      matrix[7] = 2.0*x[2]*x[3] + 2*x[0]*x[1];
      matrix[8] = x[0]*x[0] + x[3]*x[3] - x[2]*x[2] - x[1]*x[1];
    }



    inline std::ostream& operator<< (std::ostream& stream, const Quaternion& q)
    {
      stream << "[ " << q[0] << " " << q[1] << "i " << q[2] << "j " << q[3] << "k ]";
      return (stream);
    }


  }
}

#endif