File: amp2response.cpp

package info (click to toggle)
mrtrix3 3.0~rc3%2Bgit135-g2b8e7d0c2-3
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 34,248 kB
  • sloc: cpp: 117,101; python: 6,472; sh: 638; makefile: 226; xml: 39; ansic: 20
file content (377 lines) | stat: -rw-r--r-- 15,073 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
/*
 * Copyright (c) 2008-2018 the MRtrix3 contributors.
 *
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, you can obtain one at http://mozilla.org/MPL/2.0/
 *
 * MRtrix3 is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty
 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
 *
 * For more details, see http://www.mrtrix.org/
 */


#include <Eigen/Dense>

#include "command.h"
#include "header.h"
#include "image.h"
#include "image_helpers.h"
#include "types.h"

#include "math/constrained_least_squares.h"
#include "math/rng.h"
#include "math/sphere.h"
#include "math/SH.h"
#include "math/ZSH.h"

#include "dwi/gradient.h"
#include "dwi/shells.h"



using namespace MR;
using namespace App;



//#define AMP2RESPONSE_DEBUG
//#define AMP2RESPONSE_PERVOXEL_IMAGES



void usage ()
{

  AUTHOR = "Robert E. Smith (robert.smith@florey.edu.au)";

  SYNOPSIS = "Estimate response function coefficients based on the DWI signal in single-fibre voxels";

  DESCRIPTION
   + "This command uses the image data from all selected single-fibre voxels concurrently, "
     "rather than simply averaging their individual spherical harmonic coefficients. It also "
     "ensures that the response function is non-negative, and monotonic (i.e. its amplitude "
     "must increase from the fibre direction out to the orthogonal plane)."

   + "If multi-shell data are provided, and one or more b-value shells are not explicitly "
     "requested, the command will generate a response function for every b-value shell "
     "(including b=0 if present).";

  ARGUMENTS
    + Argument ("amps", "the amplitudes image").type_image_in()
    + Argument ("mask", "the mask containing the voxels from which to estimate the response function").type_image_in()
    + Argument ("directions", "a 4D image containing the estimated fibre directions").type_image_in()
    + Argument ("response", "the output zonal spherical harmonic coefficients").type_file_out();

  OPTIONS
    + Option ("isotropic", "estimate an isotropic response function (lmax=0 for all shells)")

    + Option ("noconstraint", "disable the non-negativity and monotonicity constraints")

    + Option ("directions", "provide an external text file containing the directions along which the amplitudes are sampled")
      + Argument("path").type_file_in()

    + DWI::ShellsOption

    + Option ("lmax", "specify the maximum harmonic degree of the response function to estimate "
                      "(can be a comma-separated list for multi-shell data)")
      + Argument ("values").type_sequence_int();

  REFERENCES
    + "Smith, R. E.; Dhollander, T. & Connelly, A. " // Internal
      "Constrained linear least squares estimation of anisotropic response function for spherical deconvolution. "
      "ISMRM Workshop on Breaking the Barriers of Diffusion MRI, 23.";
}



Eigen::Matrix<default_type, 3, 3> gen_rotation_matrix (const Eigen::Vector3& dir)
{
  static Math::RNG::Normal<default_type> rng;
  // Generates a matrix that will rotate a unit vector into a new frame of reference,
  //   where the peak direction of the FOD is aligned in Z (3rd dimension)
  // Previously this was done using the tensor eigenvectors
  // Here the other two axes are determined at random (but both are orthogonal to the FOD peak direction)
  Eigen::Matrix<default_type, 3, 3> R;
  R (2, 0) = dir[0]; R (2, 1) = dir[1]; R (2, 2) = dir[2];
  Eigen::Vector3 vec2 (rng(), rng(), rng());
  vec2 = dir.cross (vec2);
  vec2.normalize();
  R (0, 0) = vec2[0]; R (0, 1) = vec2[1]; R (0, 2) = vec2[2];
  Eigen::Vector3 vec3 = dir.cross (vec2);
  vec3.normalize();
  R (1, 0) = vec3[0]; R (1, 1) = vec3[1]; R (1, 2) = vec3[2];
  return R;
}


vector<size_t> all_volumes (const size_t num)
{
  vector<size_t> result;
  result.reserve (num);
  for (size_t i = 0; i != num; ++i)
    result.push_back (i);
  return result;
}


void run ()
{

  // Get directions from either selecting a b-value shell, or the header, or external file
  auto header = Header::open (argument[0]);

  // May be dealing with multiple shells
  vector<Eigen::MatrixXd> dirs_azel;
  vector<vector<size_t>> volumes;
  std::unique_ptr<DWI::Shells> shells;

  auto opt = get_options ("directions");
  if (opt.size()) {
    dirs_azel.push_back (load_matrix (opt[0][0]));
    volumes.push_back (all_volumes (dirs_azel.size()));
  } else {
    auto hit = header.keyval().find ("directions");
    if (hit != header.keyval().end()) {
      vector<default_type> dir_vector;
      for (auto line : split_lines (hit->second)) {
        auto v = parse_floats (line);
        dir_vector.insert (dir_vector.end(), v.begin(), v.end());
      }
      Eigen::MatrixXd directions (dir_vector.size() / 2, 2);
      for (size_t i = 0; i < dir_vector.size(); i += 2) {
        directions (i/2, 0) = dir_vector[i];
        directions (i/2, 1) = dir_vector[i+1];
      }
      dirs_azel.push_back (std::move (directions));
      volumes.push_back (all_volumes (dirs_azel.size()));
    } else {
      auto grad = DWI::get_valid_DW_scheme (header);
      shells.reset (new DWI::Shells (grad));
      shells->select_shells (false, false, false);
      for (size_t i = 0; i != shells->count(); ++i) {
        volumes.push_back ((*shells)[i].get_volumes());
        dirs_azel.push_back (DWI::gen_direction_matrix (grad, volumes.back()));
      }
    }
  }

  vector<int> lmax;
  int max_lmax = 0;
  opt = get_options ("lmax");
  if (get_options("isotropic").size()) {
    for (size_t i = 0; i != dirs_azel.size(); ++i)
      lmax.push_back (0);
    max_lmax = 0;
  } else if (opt.size()) {
    lmax = parse_ints (opt[0][0]);
    if (lmax.size() != dirs_azel.size())
      throw Exception ("Number of lmax\'s specified (" + str(lmax.size()) + ") does not match number of b-value shells (" + str(dirs_azel.size()) + ")");
    for (auto i : lmax) {
      if (i < 0)
        throw Exception ("Values specified for lmax must be non-negative");
      if (i%2)
        throw Exception ("Values specified for lmax must be even");
      max_lmax = std::max (max_lmax, i);
    }
  } else {
    // Auto-fill lmax
    // Because the amp->SH transform doesn't need to be applied per voxel,
    //   lmax is effectively unconstrained. Therefore generate response at
    //   lmax=10 regardless of number of input volumes.
    // - UNLESS it's b=0, in which case force lmax=0
    for (size_t i = 0; i != dirs_azel.size(); ++i) {
      if (!i && shells && shells->smallest().is_bzero())
        lmax.push_back (0);
      else
        lmax.push_back (10);
    }
    max_lmax = (shells && shells->smallest().is_bzero() && lmax.size() == 1) ? 0 : 10;
  }

  auto image = header.get_image<float>();
  auto mask = Image<bool>::open (argument[1]);
  check_dimensions (image, mask, 0, 3);
  if (!(mask.ndim() == 3 || (mask.ndim() == 4 && mask.size(3) == 1)))
    throw Exception ("input mask must be a 3D image");
  auto dir_image = Image<float>::open (argument[2]);
  if (dir_image.ndim() < 4 || dir_image.size(3) < 3)
    throw Exception ("input direction image \"" + std::string (argument[2]) + "\" does not have expected dimensions");
  check_dimensions (image, dir_image, 0, 3);

  size_t num_voxels = 0;
  for (auto l = Loop (mask, 0, 3) (mask); l; ++l) {
    if (mask.value())
      ++num_voxels;
  }
  if (!num_voxels)
    throw Exception ("input mask does not contain any voxels");

  Eigen::MatrixXd responses (dirs_azel.size(), Math::ZSH::NforL (max_lmax));

  for (size_t shell_index = 0; shell_index != dirs_azel.size(); ++shell_index) {

    std::string shell_desc = (dirs_azel.size() > 1) ? ("_shell" + str(shell_index)) : "";

    Eigen::MatrixXd dirs_cartesian = Math::Sphere::spherical2cartesian (dirs_azel[shell_index]);

    // All directions from all SF voxels get concatenated into a single large matrix
    Eigen::MatrixXd cat_transforms (num_voxels * dirs_azel[shell_index].rows(), Math::ZSH::NforL (lmax[shell_index]));
    Eigen::VectorXd cat_data (num_voxels * dirs_azel[shell_index].rows());

#ifdef AMP2RESPONSE_DEBUG
    // To make sure we've got our data rotated correctly, let's generate a scatterplot of
    //   elevation vs. amplitude
    Eigen::MatrixXd scatter;
#endif

    size_t voxel_counter = 0;
    for (auto l = Loop (mask, 0, 3) (image, mask, dir_image); l; ++l) {
      if (mask.value()) {

        // Grab the image data
        Eigen::VectorXd data (dirs_azel[shell_index].rows());
        for (size_t i = 0; i != volumes[shell_index].size(); ++i) {
          image.index(3) = volumes[shell_index][i];
          data[i] = image.value();
        }

        // Grab the fibre direction
        Eigen::Vector3 fibre_dir;
        for (dir_image.index(3) = 0; dir_image.index(3) != 3; ++dir_image.index(3))
          fibre_dir[dir_image.index(3)] = dir_image.value();
        fibre_dir.normalize();

        // Rotate the directions into a new reference frame,
        //   where the Z axis is defined by the specified direction
        Eigen::Matrix<default_type, 3, 3> R = gen_rotation_matrix (fibre_dir);
        Eigen::Matrix<default_type, Eigen::Dynamic, 3> rotated_dirs_cartesian (dirs_cartesian.rows(), 3);
        Eigen::Vector3 vec (3), rot (3);
        for (ssize_t row = 0; row != dirs_azel[shell_index].rows(); ++row) {
          vec = dirs_cartesian.row (row);
          rot = R * vec;
          rotated_dirs_cartesian.row (row) = rot;
        }

        // Convert directions from Euclidean space to azimuth/elevation pairs
        Eigen::MatrixXd rotated_dirs_azel = Math::Sphere::cartesian2spherical (rotated_dirs_cartesian);

        // Constrain elevations to between 0 and pi/2
        for (ssize_t i = 0; i != rotated_dirs_azel.rows(); ++i) {
          if (rotated_dirs_azel (i, 1) > Math::pi_2) {
            if (rotated_dirs_azel (i, 0) > Math::pi)
              rotated_dirs_azel (i, 0) -= Math::pi;
            else
              rotated_dirs_azel (i, 0) += Math::pi;
            rotated_dirs_azel (i, 1) = Math::pi - rotated_dirs_azel (i, 1);
          }
        }

#ifdef AMP2RESPONSE_PERVOXEL_IMAGES
        // For the sake of generating a figure, output the original and rotated signals to a dixel ODF image
        Header rotated_header (header);
        rotated_header.size(0) = rotated_header.size(1) = rotated_header.size(2) = 1;
        rotated_header.size(3) = volumes[shell_index].size();
        Header nonrotated_header (rotated_header);
        nonrotated_header.size(3) = header.size(3);
        Eigen::MatrixXd rotated_grad (volumes[shell_index].size(), 4);
        for (size_t i = 0; i != volumes.size(); ++i) {
          rotated_grad.block<1,3>(i, 0) = rotated_dirs_cartesian.row(i);
          rotated_grad(i, 3) = 1000.0;
        }
        DWI::set_DW_scheme (rotated_header, rotated_grad);
        Image<float> out_rotated = Image<float>::create ("rotated_amps_" + str(sf_counter) + shell_desc + ".mif", rotated_header);
        Image<float> out_nonrotated = Image<float>::create ("nonrotated_amps_" + str(sf_counter) + shell_desc + ".mif", nonrotated_header);
        out_rotated.index(0) = out_rotated.index(1) = out_rotated.index(2) = 0;
        out_nonrotated.index(0) = out_nonrotated.index(1) = out_nonrotated.index(2) = 0;
        for (size_t i = 0; i != volumes[shell_index].size(); ++i) {
          image.index(3) = volumes[shell_index][i];
          out_rotated.index(3) = i;
          out_rotated.value() = image.value();
        }
        for (ssize_t i = 0; i != header.size(3); ++i) {
          image.index(3) = out_nonrotated.index(3) = i;
          out_nonrotated.value() = image.value();
        }
#endif

        // Generate the ZSH -> amplitude transform
        Eigen::MatrixXd transform = Math::ZSH::init_amp_transform<default_type> (rotated_dirs_azel.col(1), lmax[shell_index]);

        // Concatenate these data to the ICLS matrices
        cat_transforms.block (voxel_counter * data.size(), 0, transform.rows(), transform.cols()) = transform;
        cat_data.segment (voxel_counter * data.size(), data.size()) = data;

#ifdef AMP2RESPONSE_DEBUG
        scatter.conservativeResize (cat_data.size(), 2);
        scatter.block (old_rows, 0, data.size(), 1) = rotated_dirs_azel.col(1);
        scatter.block (old_rows, 1, data.size(), 1) = data;
#endif

        ++voxel_counter;

      }
    }

#ifdef AMP2RESPONSE_DEBUG
    save_matrix (scatter, "scatter" + shell_desc + ".csv");
#endif

    Eigen::VectorXd rf;
    shell_desc = (shells && shells->count() > 1) ? ("Shell b=" + str(int(std::round((*shells)[shell_index].get_mean()))) + ": ") : "";
    // Is this anything other than an isotropic response?
    if (lmax[shell_index]) {

      if (get_options("noconstraint").size()) {

        // Get an ordinary least squares solution
        Eigen::HouseholderQR<Eigen::MatrixXd> solver (cat_transforms);
        rf = solver.solve (cat_data);

        CONSOLE (shell_desc + "Response function [" + str(rf.transpose().cast<float>()) + "] solved via ordinary least-squares from " + str(voxel_counter) + " voxels");

      } else {

        // Generate the constraint matrix
        // We are going to both constrain the amplitudes to be non-negative, and constrain the derivatives to be non-negative
        const size_t num_angles_constraint = 90;
        Eigen::VectorXd els;
        els.resize (num_angles_constraint+1);
        for (size_t i = 0; i <= num_angles_constraint; ++i)
          els[i] = default_type(i) * Math::pi / 180.0;
        Eigen::MatrixXd amp_transform   = Math::ZSH::init_amp_transform  <default_type> (els, lmax[shell_index]);
        Eigen::MatrixXd deriv_transform = Math::ZSH::init_deriv_transform<default_type> (els, lmax[shell_index]);

        Eigen::MatrixXd constraints (amp_transform.rows() + deriv_transform.rows(), amp_transform.cols());
        constraints.block (0, 0, amp_transform.rows(), amp_transform.cols()) = amp_transform;
        constraints.block (amp_transform.rows(), 0, deriv_transform.rows(), deriv_transform.cols()) = deriv_transform;

        // Initialise the problem solver
        auto problem = Math::ICLS::Problem<default_type> (cat_transforms, constraints, 1e-10, 1e-10);
        auto solver  = Math::ICLS::Solver <default_type> (problem);

        // Estimate the solution
        const size_t niter = solver (rf, cat_data);

        CONSOLE (shell_desc + "Response function [" + str(rf.transpose().cast<float>()) + " ] solved after " + str(niter) + " constraint iterations from " + str(voxel_counter) + " voxels");

      }

    } else {

      // lmax is zero - perform a straight average of the image data
      rf.resize(1);
      rf[0] = cat_data.mean() * std::sqrt(4*Math::pi);

      CONSOLE (shell_desc + "Response function [ " + str(float(rf[0])) + " ] from average of " + str(voxel_counter) + " voxels");

    }

    rf.conservativeResizeLike (Eigen::VectorXd::Zero (Math::ZSH::NforL (max_lmax)));
    responses.row(shell_index) = rf;
  }

  save_matrix (responses, argument[3]);
}