File: tensor2metric.cpp

package info (click to toggle)
mrtrix3 3.0~rc3%2Bgit135-g2b8e7d0c2-3
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 34,248 kB
  • sloc: cpp: 117,101; python: 6,472; sh: 638; makefile: 226; xml: 39; ansic: 20
file content (382 lines) | stat: -rw-r--r-- 11,907 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
/*
 * Copyright (c) 2008-2018 the MRtrix3 contributors.
 *
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, you can obtain one at http://mozilla.org/MPL/2.0/
 *
 * MRtrix3 is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty
 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
 *
 * For more details, see http://www.mrtrix.org/
 */


#include "command.h"
#include "progressbar.h"
#include "image.h"
#include "algo/threaded_copy.h"
#include "dwi/gradient.h"
#include "dwi/tensor.h"
#include <Eigen/Eigenvalues>

using namespace MR;
using namespace App;

using value_type = float;
const char* modulate_choices[] = { "none", "fa", "eigval", NULL };

void usage ()
{
  ARGUMENTS 
  + Argument ("tensor", "the input tensor image.").type_image_in ();

  OPTIONS 
  + Option ("adc",
            "compute the mean apparent diffusion coefficient (ADC) of the diffusion tensor. "
            "(sometimes also referred to as the mean diffusivity (MD))")
  + Argument ("image").type_image_out()
 
  + Option ("fa",
            "compute the fractional anisotropy (FA) of the diffusion tensor.")
  + Argument ("image").type_image_out()
 
  + Option ("ad",
            "compute the axial diffusivity (AD) of the diffusion tensor. "
            "(equivalent to the principal eigenvalue)")
  + Argument ("image").type_image_out()
 
  + Option ("rd",
            "compute the radial diffusivity (RD) of the diffusion tensor. "
            "(equivalent to the mean of the two non-principal eigenvalues)")
  + Argument ("image").type_image_out()
  
  + Option ("cl",
            "compute the linearity metric of the diffusion tensor. "
            "(one of the three Westin shape metrics)")
  + Argument ("image").type_image_out()
 
  + Option ("cp",
            "compute the planarity metric of the diffusion tensor. "
            "(one of the three Westin shape metrics)")
  + Argument ("image").type_image_out()
  
  + Option ("cs",
            "compute the sphericity metric of the diffusion tensor. "
            "(one of the three Westin shape metrics)")
  + Argument ("image").type_image_out()
 
  + Option ("value",
            "compute the selected eigenvalue(s) of the diffusion tensor.")
  + Argument ("image").type_image_out()
 
  + Option ("vector",
            "compute the selected eigenvector(s) of the diffusion tensor.")
  + Argument ("image").type_image_out()
 
  + Option ("num",
            "specify the desired eigenvalue/eigenvector(s). Note that several eigenvalues "
            "can be specified as a number sequence. For example, '1,3' specifies the "
            "principal (1) and minor (3) eigenvalues/eigenvectors (default = 1).")
  + Argument ("sequence").type_sequence_int()

  + Option ("modulate",
            "specify how to modulate the magnitude of the eigenvectors. Valid choices "
            "are: none, FA, eigval (default = FA).")
  + Argument ("choice").type_choice (modulate_choices)
 
  + Option ("mask",
            "only perform computation within the specified binary brain mask image.")
  + Argument ("image").type_image_in();
  
  AUTHOR = "Thijs Dhollander (thijs.dhollander@gmail.com) & Ben Jeurissen (ben.jeurissen@uantwerpen.be) & J-Donald Tournier (jdtournier@gmail.com)";

  SYNOPSIS = "Generate maps of tensor-derived parameters";
  
  REFERENCES 
  + "Basser, P. J.; Mattiello, J. & Lebihan, D. "
    "MR diffusion tensor spectroscopy and imaging. "
    "Biophysical Journal, 1994, 66, 259-267"
  + "Westin, C. F.; Peled, S.; Gudbjartsson, H.; Kikinis, R. & Jolesz, F. A. "
    "Geometrical diffusion measures for MRI from tensor basis analysis. "
    "Proc Intl Soc Mag Reson Med, 1997, 5, 1742";
}

class Processor { MEMALIGN(Processor)
  public:
    Processor (Image<bool>& mask_img, 
        Image<value_type>& adc_img, 
        Image<value_type>& fa_img, 
        Image<value_type>& ad_img, 
        Image<value_type>& rd_img, 
        Image<value_type>& cl_img, 
        Image<value_type>& cp_img, 
        Image<value_type>& cs_img, 
        Image<value_type>& value_img, 
        Image<value_type>& vector_img, 
        vector<int>& vals, 
        int modulate) :
      mask_img (mask_img),
      adc_img (adc_img),
      fa_img (fa_img),
      ad_img (ad_img),
      rd_img (rd_img),
      cl_img (cl_img),
      cp_img (cp_img),
      cs_img (cs_img),
      value_img (value_img),
      vector_img (vector_img),
      vals (vals),
      modulate (modulate) {
        for (auto& n : this->vals)
          --n;
      }

    void operator() (Image<value_type>& dt_img)
    {
      /* check mask */ 
      if (mask_img.valid()) {
        assign_pos_of (dt_img, 0, 3).to (mask_img);
        if (!mask_img.value())
          return;
      }
     
      /* input dt */
      Eigen::Matrix<double, 6, 1> dt;
      for (auto l = Loop (3) (dt_img); l; ++l)
        dt[dt_img.index(3)] = dt_img.value();
      
      /* output adc */
      if (adc_img.valid()) {
        assign_pos_of (dt_img, 0, 3).to (adc_img);
        adc_img.value() = DWI::tensor2ADC(dt);
      }
      
      double fa = 0.0;
      if (fa_img.valid() || (vector_img.valid() && (modulate == 1)))
        fa = DWI::tensor2FA(dt);
      
      /* output fa */
      if (fa_img.valid()) {
        assign_pos_of (dt_img, 0, 3).to (fa_img);
        fa_img.value() = fa;
      }
      
      bool need_eigenvalues = value_img.valid() || vector_img.valid() || ad_img.valid() || rd_img.valid() || cl_img.valid() || cp_img.valid() || cs_img.valid();
      
      Eigen::SelfAdjointEigenSolver<Eigen::Matrix3d> es;
      if (need_eigenvalues || vector_img.valid()) {
        Eigen::Matrix3d M;
        M (0,0) = dt[0];
        M (1,1) = dt[1];
        M (2,2) = dt[2];
        M (0,1) = M (1,0) = dt[3];
        M (0,2) = M (2,0) = dt[4];
        M (1,2) = M (2,1) = dt[5];
        es = Eigen::SelfAdjointEigenSolver<Eigen::Matrix3d>(M, vector_img.valid() ? Eigen::ComputeEigenvectors : Eigen::EigenvaluesOnly);
      }
      
      Eigen::Vector3d eigval;
      ssize_t ith_eig[3] = { 2, 1, 0 };
      if (need_eigenvalues) {
        eigval = es.eigenvalues();
        ith_eig[0] = 0; ith_eig[1] = 1; ith_eig[2] = 2;
        std::sort (std::begin (ith_eig), std::end (ith_eig), 
            [&eigval](size_t a, size_t b) { return abs(eigval[a]) > abs(eigval[b]); });
      }
        
      /* output value */
      if (value_img.valid()) {
        assign_pos_of (dt_img, 0, 3).to (value_img);
        if (vals.size() > 1) {
          auto l = Loop(3)(value_img);
          for (size_t i = 0; i < vals.size(); i++) {
            value_img.value() = eigval(ith_eig[vals[i]]); l++;
          }
        } else {
          value_img.value() = eigval(ith_eig[vals[0]]);
        }
      }
      
      /* output ad */
      if (ad_img.valid()) {
        assign_pos_of (dt_img, 0, 3).to (ad_img);
        ad_img.value() = eigval(2);
      }
      
      /* output rd */
      if (rd_img.valid()) {
        assign_pos_of (dt_img, 0, 3).to (rd_img);
        rd_img.value() = (eigval(1) + eigval(0)) / 2;
      }
      
      /* output shape measures */
      if (cl_img.valid() || cp_img.valid() || cs_img.valid()) {
        double eigsum = eigval.sum();
        if (eigsum != 0.0) {
          if (cl_img.valid()) {
            assign_pos_of (dt_img, 0, 3).to (cl_img);
            cl_img.value() = (eigval(2) - eigval(1)) / eigsum;
          }
          if (cp_img.valid()) {
            assign_pos_of (dt_img, 0, 3).to (cp_img);
            cp_img.value() = 2.0 * (eigval(1) - eigval(0)) / eigsum;
          }
          if (cs_img.valid()) {
            assign_pos_of (dt_img, 0, 3).to (cs_img);
            cs_img.value() = 3.0 * eigval(0) / eigsum;
          }
        }
      }
      
      /* output vector */
      if (vector_img.valid()) {
        Eigen::Matrix3d eigvec = es.eigenvectors();
        assign_pos_of (dt_img, 0, 3).to (vector_img);
        auto l = Loop(3)(vector_img);
        for (size_t i = 0; i < vals.size(); i++) {
          double fact = 1.0;
          if (modulate == 1)
            fact = fa;
          else if (modulate == 2)
            fact = eigval(ith_eig[vals[i]]);
          vector_img.value() = eigvec(0,ith_eig[vals[i]])*fact; l++;
          vector_img.value() = eigvec(1,ith_eig[vals[i]])*fact; l++;
          vector_img.value() = eigvec(2,ith_eig[vals[i]])*fact; l++;
        }
      }                   
    }
    
  private:
    Image<bool> mask_img;
    Image<value_type> adc_img;
    Image<value_type> fa_img;
    Image<value_type> ad_img;
    Image<value_type> rd_img;
    Image<value_type> cl_img;
    Image<value_type> cp_img;
    Image<value_type> cs_img;
    Image<value_type> value_img;
    Image<value_type> vector_img;
    vector<int> vals;
    int modulate;
};








void run ()
{
  auto dt_img = Image<value_type>::open (argument[0]);
  Header header (dt_img);

  auto mask_img = Image<bool>();
  auto opt = get_options ("mask");
  if (opt.size()) {
    mask_img = Image<bool>::open (opt[0][0]);
    check_dimensions (dt_img, mask_img, 0, 3);
  }

  size_t metric_count = 0;
  
  auto adc_img = Image<value_type>();
  opt = get_options ("adc");
  if (opt.size()) {
    header.ndim() = 3;
    adc_img = Image<value_type>::create (opt[0][0], header);
    metric_count++;
  }
  
  auto fa_img = Image<value_type>();
  opt = get_options ("fa");
  if (opt.size()) {
    header.ndim() = 3;
    fa_img = Image<value_type>::create (opt[0][0], header);
    metric_count++;
  }
  
  auto ad_img = Image<value_type>();
  opt = get_options ("ad");
  if (opt.size()) {
    header.ndim() = 3;
    ad_img = Image<value_type>::create (opt[0][0], header);
    metric_count++;
  }
  
  auto rd_img = Image<value_type>();
  opt = get_options ("rd");
  if (opt.size()) {
    header.ndim() = 3;
    rd_img = Image<value_type>::create (opt[0][0], header);
    metric_count++;
  }
  
  auto cl_img = Image<value_type>();
  opt = get_options ("cl");
  if (opt.size()) {
    header.ndim() = 3;
    cl_img = Image<value_type>::create (opt[0][0], header);
    metric_count++;
  }
  
  auto cp_img = Image<value_type>();
  opt = get_options ("cp");
  if (opt.size()) {
    header.ndim() = 3;
    cp_img = Image<value_type>::create (opt[0][0], header);
    metric_count++;
  }
  
  auto cs_img = Image<value_type>();
  opt = get_options ("cs");
  if (opt.size()) {
    header.ndim() = 3;
    cs_img = Image<value_type>::create (opt[0][0], header);
    metric_count++;
  }
  
  vector<int> vals = {1};
  opt = get_options ("num");
  if (opt.size()) {
    vals = opt[0][0];
    if (vals.empty())
      throw Exception ("invalid eigenvalue/eigenvector number specifier");
    for (size_t i = 0; i < vals.size(); ++i) 
      if (vals[i] < 1 || vals[i] > 3)
        throw Exception ("eigenvalue/eigenvector number is out of bounds");
  }

  float modulate = get_option_value ("modulate", 1);

  auto value_img = Image<value_type>();
  opt = get_options ("value");
  if (opt.size()) {
    header.ndim() = 3;
    if (vals.size()>1) {
      header.ndim() = 4;
      header.size (3) = vals.size();
    }
    value_img = Image<value_type>::create (opt[0][0], header);
    metric_count++;
  }
  
  auto vector_img = Image<value_type>();
  opt = get_options ("vector");
  if (opt.size()) {
    header.ndim() = 4;
    header.size (3) = vals.size()*3;
    vector_img = Image<value_type>::create (opt[0][0], header);
    metric_count++;
  }

  if (!metric_count)
    throw Exception ("No output specified; must request at least one metric of interest using the available command-line options");
  
  ThreadedLoop (std::string("computing metric") + (metric_count > 1 ? "s" : ""), dt_img, 0, 3)
    .run (Processor (mask_img, adc_img, fa_img, ad_img, rd_img, cl_img, cp_img, cs_img, value_img, vector_img, vals, modulate), dt_img);
}