1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
|
/* Copyright (c) 2008-2022 the MRtrix3 contributors.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* Covered Software is provided under this License on an "as is"
* basis, without warranty of any kind, either expressed, implied, or
* statutory, including, without limitation, warranties that the
* Covered Software is free of defects, merchantable, fit for a
* particular purpose or non-infringing.
* See the Mozilla Public License v. 2.0 for more details.
*
* For more details, see http://www.mrtrix.org/.
*/
#ifndef __image_adapter_gaussian1D_h__
#define __image_adapter_gaussian1D_h__
#include "adapter/base.h"
namespace MR
{
namespace Adapter
{
template <class ImageType>
class Gaussian1D :
public Base<Gaussian1D<ImageType>,ImageType>
{ MEMALIGN (Gaussian1D<ImageType>)
public:
using base_type = Base<Gaussian1D<ImageType>, ImageType>;
using value_type = typename ImageType::value_type;
using base_type::name;
using base_type::size;
using base_type::spacing;
using base_type::index;
Gaussian1D (const ImageType& parent,
default_type stdev_in = 1.0,
size_t axis_in = 0,
size_t extent = 0,
bool zero_boundary = false) :
base_type (parent),
stdev (stdev_in),
axis (axis_in),
zero_boundary (zero_boundary) {
if (!extent)
radius = ceil(2 * stdev / spacing(axis));
else if (extent == 1)
radius = 0;
else
radius = (extent - 1) / 2;
compute_kernel();
}
value_type value ()
{
if (!kernel.size())
return base_type::value();
const ssize_t pos = index (axis);
if (zero_boundary)
if (pos == 0 || pos == size(axis) - 1)
return 0.0;
const ssize_t from = (pos < radius) ? 0 : pos - radius;
const ssize_t to = (pos + radius) >= size(axis) ? size(axis) - 1 : pos + radius;
value_type result = 0.0;
value_type av_weights = 0.0;
ssize_t c = (pos < radius) ? radius - pos : 0;
for (ssize_t k = from; k <= to; ++k, ++c) {
index (axis) = k;
value_type neighbour_value = base_type::value();
if (std::isfinite (neighbour_value)) {
av_weights += kernel[c];
result += value_type (base_type::value()) * kernel[c];
}
}
result /= av_weights;
index (axis) = pos;
return result;
}
protected:
void compute_kernel()
{
if ((radius < 1) || stdev <= 0.0)
return;
kernel.resize (2 * radius + 1);
default_type norm_factor = 0.0;
for (size_t c = 0; c < kernel.size(); ++c) {
kernel[c] = exp(-((c-radius) * (c-radius) * spacing(axis) * spacing(axis)) / (2 * stdev * stdev));
norm_factor += kernel[c];
}
for (size_t c = 0; c < kernel.size(); c++) {
kernel[c] /= norm_factor;
}
}
default_type stdev;
ssize_t radius;
size_t axis;
vector<default_type> kernel;
const bool zero_boundary;
};
}
}
#endif
|