1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
|
/* Copyright (c) 2008-2022 the MRtrix3 contributors.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* Covered Software is provided under this License on an "as is"
* basis, without warranty of any kind, either expressed, implied, or
* statutory, including, without limitation, warranties that the
* Covered Software is free of defects, merchantable, fit for a
* particular purpose or non-infringing.
* See the Mozilla Public License v. 2.0 for more details.
*
* For more details, see http://www.mrtrix.org/.
*/
#include "algo/histogram.h"
namespace MR
{
namespace Algo
{
namespace Histogram
{
using namespace App;
const OptionGroup Options = OptionGroup ("Histogram generation options")
+ Option ("bins", "Manually set the number of bins to use to generate the histogram.")
+ Argument ("num").type_integer (2)
+ Option ("template", "Use an existing histogram file as the template for histogram formation")
+ Argument ("file").type_file_in()
+ Option ("mask", "Calculate the histogram only within a mask image.")
+ Argument ("image").type_image_in()
+ Option ("ignorezero", "ignore zero-valued data during histogram construction.");
void Calibrator::from_file (const std::string& path)
{
Eigen::MatrixXd M;
try {
M = load_matrix (path);
if (M.cols() == 1)
throw Exception ("Histogram template must have at least 2 columns");
vector<default_type>().swap (data);
auto V = M.row(0);
num_bins = V.size();
bin_width = (V[num_bins-1] - V[0]) / default_type(num_bins-1);
min = V[0] - (0.5 * bin_width);
max = V[num_bins-1] + (0.5 * bin_width);
for (size_t i = 0; i != num_bins; ++i) {
if (abs (get_bin_centre(i) - V[i]) > 1e-5)
throw Exception ("Non-equal spacing in histogram bin centres");
}
} catch (Exception& e) {
throw Exception (e, "Could not use file \"" + path + "\" as histogram template");
}
}
void Calibrator::finalize (const size_t num_volumes, const bool is_integer)
{
if (!std::isfinite (bin_width)) {
if (num_bins) {
bin_width = (max - min) / default_type(num_bins);
} else {
// Freedman-Diaconis rule for selecting bin size for a histogram
// Sometimes data from multiple volumes are used for calibration, but
// histograms are generated for individual volumes
// Need to adjust the bin width accordingly... kinda ugly hack
// Will need to revisit if mrstats gets capability to compute statistics across all volumes rather than splitting
bin_width = 2.0 * get_iqr() * std::pow(static_cast<default_type>(data.size() / num_volumes), -1.0/3.0);
vector<default_type>().swap (data); // No longer required; free the memory used
// If the input data are integers, the bin width should also be an integer, to avoid getting
// regular spike artifacts in the histogram
if (is_integer) {
bin_width = std::round (bin_width);
num_bins = std::ceil ((max - min) / bin_width);
} else {
// Now set the number of bins, and recalculate the bin width, to ensure
// evenly-spaced bins from min to max
num_bins = std::round ((max - min) / get_bin_width());
bin_width = (max - min) / default_type(num_bins);
}
}
}
}
default_type Calibrator::get_iqr() {
assert (data.size());
const size_t lower_index = std::round (0.25*data.size());
std::nth_element (data.begin(), data.begin() + lower_index, data.end());
const default_type lower = data[data.size()/4];
const size_t upper_index = std::round (0.75*data.size());
std::nth_element (data.begin(), data.begin() + upper_index, data.end());
const default_type upper = data[upper_index];
return (upper - lower);
}
Data::cdf_type Data::cdf() const
{
cdf_type result (list.size());
size_t count = 0;
for (size_t i = 0; i != size_t(list.size()); ++i) {
count += list[i];
result[i] = count;
}
result /= count;
return result;
}
default_type Data::first_min () const
{
ssize_t p1 = 0;
while (list[p1] <= list[p1+1] && p1+2 < list.size())
++p1;
for (ssize_t p = p1; p < list.size(); ++p) {
if (2*list[p] < list[p1])
break;
if (list[p] >= list[p1])
p1 = p;
}
ssize_t m1 (p1+1);
while (list[m1] >= list[m1+1] && m1+2 < list.size())
++m1;
for (ssize_t m = m1; m < list.size(); ++m) {
if (list[m] > 2*list[m1])
break;
if (list[m] <= list[m1])
m1 = m;
}
return info.get_min() + (info.get_bin_width() * (m1 + 0.5));
}
default_type Data::entropy () const {
size_t totalFrequency = 0;
for (size_t i = 0; i < size_t(list.size()); i++)
totalFrequency += list[i];
default_type imageEntropy = 0;
for (size_t i = 0; i < size_t(list.size()); i++){
const default_type probability = static_cast<default_type>(list[i]) / static_cast<default_type>(totalFrequency);
if (probability > 0.99 / totalFrequency)
imageEntropy += -probability * log(probability);
}
return imageEntropy;
}
Matcher::Matcher (const Data& input, const Data& target) :
calib_input (input .get_calibration()),
calib_target (target.get_calibration())
{
// Need to have the CDF for each of the two histograms
const auto cdf_input = input.cdf();
const auto cdf_target = target.cdf();
// Each index in the input CDF needs to map to a (floating-point) index in the target CDF
// (linearly approximate the index that would result in the same value in the target CDF)
mapping = vector_type::Zero (cdf_input.size() + 1);
size_t upper_target_index = 1;
for (size_t input_index = 1; input_index != size_t(cdf_input.size()); ++input_index) {
while (upper_target_index < size_t(cdf_target.size()) && cdf_target[upper_target_index] < cdf_input[input_index])
++upper_target_index;
const size_t lower_target_index = upper_target_index - 1;
const default_type mu = (cdf_input[input_index] - cdf_target[lower_target_index]) / (cdf_target[upper_target_index] - cdf_target[lower_target_index]);
mapping[input_index] = lower_target_index + mu;
}
}
default_type Matcher::operator() (const default_type in) const
{
const default_type input_bin_float = (in - calib_input.get_min()) / calib_input.get_bin_width();
default_type output_pos;
if (input_bin_float < 0.0) {
output_pos = 0.0;
} else if (input_bin_float >= default_type(calib_input.get_num_bins())) {
output_pos = default_type(calib_input.get_num_bins());
} else {
const size_t lower = std::floor (input_bin_float);
const default_type mu = input_bin_float - lower;
output_pos = ((1.0 - mu) * mapping[lower]) + (mu * mapping[lower+1]);
}
return calib_target.get_min() + (output_pos * calib_target.get_bin_width());
}
}
}
}
|