File: histogram.cpp

package info (click to toggle)
mrtrix3 3.0.4-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 13,712 kB
  • sloc: cpp: 129,776; python: 9,494; sh: 593; makefile: 234; xml: 47
file content (219 lines) | stat: -rw-r--r-- 7,780 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
/* Copyright (c) 2008-2022 the MRtrix3 contributors.
 *
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/.
 *
 * Covered Software is provided under this License on an "as is"
 * basis, without warranty of any kind, either expressed, implied, or
 * statutory, including, without limitation, warranties that the
 * Covered Software is free of defects, merchantable, fit for a
 * particular purpose or non-infringing.
 * See the Mozilla Public License v. 2.0 for more details.
 *
 * For more details, see http://www.mrtrix.org/.
 */

#include "algo/histogram.h"

namespace MR
{
  namespace Algo
  {
    namespace Histogram
    {


      using namespace App;

      const OptionGroup Options = OptionGroup ("Histogram generation options")

      + Option ("bins", "Manually set the number of bins to use to generate the histogram.")
      + Argument ("num").type_integer (2)

      + Option ("template", "Use an existing histogram file as the template for histogram formation")
      + Argument ("file").type_file_in()

      + Option ("mask", "Calculate the histogram only within a mask image.")
      + Argument ("image").type_image_in()

      + Option ("ignorezero", "ignore zero-valued data during histogram construction.");




      void Calibrator::from_file (const std::string& path)
      {
        Eigen::MatrixXd M;
        try {
          M = load_matrix (path);
          if (M.cols() == 1)
            throw Exception ("Histogram template must have at least 2 columns");
          vector<default_type>().swap (data);
          auto V = M.row(0);
          num_bins = V.size();
          bin_width = (V[num_bins-1] - V[0]) / default_type(num_bins-1);
          min = V[0] - (0.5 * bin_width);
          max = V[num_bins-1] + (0.5 * bin_width);
          for (size_t i = 0; i != num_bins; ++i) {
            if (abs (get_bin_centre(i) - V[i]) > 1e-5)
              throw Exception ("Non-equal spacing in histogram bin centres");
          }
        } catch (Exception& e) {
          throw Exception (e, "Could not use file \"" + path + "\" as histogram template");
        }

      }



      void Calibrator::finalize (const size_t num_volumes, const bool is_integer)
      {
        if (!std::isfinite (bin_width)) {
          if (num_bins) {
            bin_width = (max - min) / default_type(num_bins);
          } else {
            // Freedman-Diaconis rule for selecting bin size for a histogram
            // Sometimes data from multiple volumes are used for calibration, but
            //   histograms are generated for individual volumes
            // Need to adjust the bin width accordingly... kinda ugly hack
            // Will need to revisit if mrstats gets capability to compute statistics across all volumes rather than splitting
            bin_width = 2.0 * get_iqr() * std::pow(static_cast<default_type>(data.size() / num_volumes), -1.0/3.0);
            vector<default_type>().swap (data); // No longer required; free the memory used
            // If the input data are integers, the bin width should also be an integer, to avoid getting
            //   regular spike artifacts in the histogram
            if (is_integer) {
              bin_width = std::round (bin_width);
              num_bins = std::ceil ((max - min) / bin_width);
            } else {
              // Now set the number of bins, and recalculate the bin width, to ensure
              //   evenly-spaced bins from min to max
              num_bins = std::round ((max - min) / get_bin_width());
              bin_width = (max - min) / default_type(num_bins);
            }
          }
        }
      }



      default_type Calibrator::get_iqr() {
        assert (data.size());
        const size_t lower_index = std::round (0.25*data.size());
        std::nth_element (data.begin(), data.begin() + lower_index, data.end());
        const default_type lower = data[data.size()/4];
        const size_t upper_index = std::round (0.75*data.size());
        std::nth_element (data.begin(), data.begin() + upper_index, data.end());
        const default_type upper = data[upper_index];
        return (upper - lower);
      }






      Data::cdf_type Data::cdf() const
      {
        cdf_type result (list.size());
        size_t count = 0;
        for (size_t i = 0; i != size_t(list.size()); ++i) {
          count += list[i];
          result[i] = count;
        }
        result /= count;
        return result;
      }



      default_type Data::first_min () const
      {
        ssize_t p1 = 0;
        while (list[p1] <= list[p1+1] && p1+2 < list.size())
          ++p1;
        for (ssize_t p = p1; p < list.size(); ++p) {
          if (2*list[p] < list[p1])
            break;
          if (list[p] >= list[p1])
            p1 = p;
        }

        ssize_t m1 (p1+1);
        while (list[m1] >= list[m1+1] && m1+2 < list.size())
          ++m1;
        for (ssize_t m = m1; m < list.size(); ++m) {
          if (list[m] > 2*list[m1])
            break;
          if (list[m] <= list[m1])
            m1 = m;
        }

        return info.get_min() + (info.get_bin_width() * (m1 + 0.5));
      }



      default_type Data::entropy () const {
        size_t totalFrequency = 0;
        for (size_t i = 0; i < size_t(list.size()); i++)
          totalFrequency += list[i];
        default_type imageEntropy = 0;
        for (size_t i = 0; i < size_t(list.size()); i++){
          const default_type probability = static_cast<default_type>(list[i]) / static_cast<default_type>(totalFrequency);
          if (probability > 0.99 / totalFrequency)
            imageEntropy += -probability * log(probability);
        }
        return imageEntropy;
      }






      Matcher::Matcher (const Data& input, const Data& target) :
          calib_input  (input .get_calibration()),
          calib_target (target.get_calibration())
      {
        // Need to have the CDF for each of the two histograms
        const auto cdf_input  = input.cdf();
        const auto cdf_target = target.cdf();

        // Each index in the input CDF needs to map to a (floating-point) index in the target CDF
        //   (linearly approximate the index that would result in the same value in the target CDF)
        mapping = vector_type::Zero (cdf_input.size() + 1);
        size_t upper_target_index = 1;
        for (size_t input_index = 1; input_index != size_t(cdf_input.size()); ++input_index) {
          while (upper_target_index < size_t(cdf_target.size()) && cdf_target[upper_target_index] < cdf_input[input_index])
            ++upper_target_index;
          const size_t lower_target_index = upper_target_index - 1;
          const default_type mu = (cdf_input[input_index] - cdf_target[lower_target_index]) / (cdf_target[upper_target_index] - cdf_target[lower_target_index]);
          mapping[input_index] = lower_target_index + mu;
        }
      }



      default_type Matcher::operator() (const default_type in) const
      {
        const default_type input_bin_float = (in - calib_input.get_min()) / calib_input.get_bin_width();
        default_type output_pos;
        if (input_bin_float < 0.0) {
          output_pos = 0.0;
        } else if (input_bin_float >= default_type(calib_input.get_num_bins())) {
          output_pos = default_type(calib_input.get_num_bins());
        } else {
          const size_t lower = std::floor (input_bin_float);
          const default_type mu = input_bin_float - lower;
          output_pos = ((1.0 - mu) * mapping[lower]) + (mu * mapping[lower+1]);
        }
        return calib_target.get_min() + (output_pos * calib_target.get_bin_width());
      }




    }
  }
}