1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
|
/* Copyright (c) 2008-2022 the MRtrix3 contributors.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* Covered Software is provided under this License on an "as is"
* basis, without warranty of any kind, either expressed, implied, or
* statutory, including, without limitation, warranties that the
* Covered Software is free of defects, merchantable, fit for a
* particular purpose or non-infringing.
* See the Mozilla Public License v. 2.0 for more details.
*
* For more details, see http://www.mrtrix.org/.
*/
#ifndef __algo_threaded_loop_h__
#define __algo_threaded_loop_h__
#include "debug.h"
#include "algo/loop.h"
#include "algo/iterator.h"
#include "thread.h"
namespace MR
{
/** \addtogroup thread_classes
* @{
*
* \defgroup image_thread_looping Thread-safe image looping
*
* These functions allows arbitrary looping operations to be performed in
* parallel, using a versatile multi-threading framework. It works
* hand-in-hand with the [single-threaded looping functions](@ref MR::Loop()),
* and can be used to code up complex operations with relatively little
* effort.
*
* The ThreadedLoop() function is generally used by first initialising
* an object that will determine the order of traversal, which axes will be
* looped over between synchronisation calls, and what message to display in
* the progress bar if one is needed. This is all performed in the various
* overloaded versions of ThreadedLoop(), which are template functions
* allowing the class to be initialised from any `HeaderType` class. These are
* described in more detail below.
*
* The object returned by the ThreadedLoop() functions provide methods to
* loop over ImageType classes. To do this, the object returned by
* ThreadedLoop() keeps track of which axes will be managed by each thread
* independently (the _inner axes_), and which will be coordinated across
* threads (the _outer axes_). By default, the inner axes consist of a
* single axis, chosen to be the axis of smallest stride in the \a source
* `HeaderType` class provided at initialisation. The remaining axes are
* coordinated across threads: each invocation of the thread's functor is
* given a fresh position to operate from, in the form of an Iterator class.
*
* To help illustrate the concept, consider an example whereby the inner axes
* have been set to the x & y axes (i.e. axes 0 & 1), and the outer axes have
* been set to the z and volume axes (i.e. axes 2 & 3). Each thread will do
* the following:
*
* 1. lock the loop mutex, obtain a new set of z & volume coordinates, then
* release the mutex so other threads can obtain their own unique set of
* coordinates to process;
* 2. set the position of all `ImageType` classes to be processed according
* to these coordinates;
* 3. iterate over the x & y axes, invoking the user-supplied functor each
* time;
* 4. repeat from step 1 until all the data have been processed.
*
*
* \section threaded_loop_constructor Instantiating a ThreadedLoop() object
*
* The ThreadedLoop() functions can be used to set up any reasonable
* multi-threaded looping structure. The various relevant aspects that can be
* influenced include:
*
* - which axes will be iterated over; by default, all axes of the \a source
* `HeaderType` class will be included.
*
* - the order of traversal, in the form of a list of axes that will be
* iterated over in order; the first entry in the list will be iterated
* over in the inner-most loop, etc. By default, the axes are traversed in
* the order of increasing stride of the \a source InfoType class.
*
* - the number of axes that will be managed independently by each thread.
* By default, this number is one.
*
* - a string that will be displayed in the progress bar if one is desired.
*
* The various overloaded functions allow these settings to be specified in
* different ways. A `HeaderType` class is always required; it is generally
* recommended to provide the (or one of the) \e input `ImageType` class that
* is to be processed, since its order of traversal will have the most
* influence on performance (by making the most efficient use of the
* hardware's RAM access and CPU cache). It is also possible to supply a
* `vector<size_t>` directly if required.
*
* These axes can be restricted to a specific range to allow volume-wise
* processing, etc. The inner axes can be specified by supplying how many
* are needed; they will then be taken from the list of axes to be looped
* over, in order of increasing stride. It is also possible to provide the
* list of inners axes and outer axes as separate `vector<size_t>`
* arguments.
*
*
*
* \section threaded_loop_run Running the ThreadedLoop() objects
*
* The run() methods will run the ThreadedLoop, invoking the specified
* function or functor once per voxel in the loop. The different versions
* will expect different signatures for the function or functor, and manage
* looping over different numbers of `ImageType` classes. This should be
* clarified by examining the examples below.
*
* This example can be used to compute the exponential of the voxel values
* in-place, while displaying a progress message:
*
* ~~~{.cpp}
* void my_function (MyImageType& vox) {
* vox.value() = std::exp (vox.value());
* }
*
* ...
*
* MyImageType vox;
* ThreadedLoop ("computing exponential in-place", vox)
* .run (my_function, vox);
* ~~~
*
* To make this operation more easily generalisable to any `ImageType`, use a
* functor with a template operator() method:
*
* ~~~{.cpp}
* class MyFunction {
* public:
* template <class ImageType>
* void operator() (ImageType& vox) {
* vox.value() = std::exp (vox.value());
* }
* };
*
* ...
*
* AnyImageType vox;
* ThreadedLoop ("computing exponential in-place", vox)
* .run (MyFunction(), vox);
* ~~~
*
* Note that a simple operation such as the previous example can be written
* more compactly using C++11 lambda expressions:
* ~~~{.cpp}
* MyImageType vox;
* ThreadedLoop ("computing exponential in-place", vox)
* .run ([](decltype(vox)& v) { v.value() = std::exp(v.value()); }, vox);
* ~~~
*
*
* As a further example, the following snippet performs the addition of any
* `ImageTypes` \a vox1 and \a vox2, this time storing the results in \a
* vox_out, with no progress display, and looping according to the strides
* in \a vox1:
* ~~~{.cpp}
* struct MyAdd {
* template <class ImageType1, class ImageType2, class ImageType3>
* void operator() (ImageType1& out, const ImageType2& in1, const ImageType3& in2) {
* out.value() = in1.value() + in2.value();
* }
* };
*
* ...
*
* ThreadedLoop (vox1).run (MyAdd(), vox_out, vox1, vox2);
* ~~~
*
* Note that the `ImageType` arguments to run() must be provided in the same
* order as expected by the Functor's `operator()` method.
*
* Again, such a simple operation can be written more compactly using C++11
* lambda expressions:
* ~~~{.cpp}
* auto f = [](decltype(vox_out)& out, decltype(vox1)& in1, decltype(vox2)& in2) {
* out.value() = in1.value() + in2.value();
* }
* ThreadedLoop (vox1).run (f, vox_out, vox1, vox2);
* ~~~
*
*
* This example uses a functor to computes the root-mean-square of \a vox:
* \code
* class RMS {
* public:
* // We pass a reference to the same double to all threads.
* // Each thread accumulates its own sum-of-squares, and
* // updates the overal sum-of-squares in the destructor, which is
* // guaranteed to be invoked after all threads have re-joined,
* // thereby avoiding race conditions.
* RMS (double& grand_SoS) : SoS (0.0), grand_SoS (grand_SoS) { }
* ~RMS () { grand_SoS += SoS; }
*
* // accumulate the thread-local sum-of-squares:
* template <class ImageType>
* void operator() (const ImageType& in) {
* SoS += Math::pow2 (in.value());
* }
*
* protected:
* double SoS;
* double& grand_SoS;
* };
*
* ...
*
* double SoS = 0.0;
* ThreadedLoop ("computing RMS of \"" + vox.name() + "\"", vox)
* .run (RMS(SoS), vox);
*
* double rms = std::sqrt (SoS / voxel_count (vox));
* \endcode
*
* \section threaded_loop_run_outer The run_outer() method
*
* The run_outer() method can be used if needed to loop over the indices in
* the outer loop only. This method is used internally by the run() methods,
* and may prove useful in selected cases if each thread needs to handle its
* own looping over the inner axes. Usage is essentially identical to the
* run() method, and the function or functor provided will need to have a
* void operator() (const Iterator& pos) method defined. Note that in this
* case, any `ImageType` classes to be looped over will need to be stored as
* members to the functor, since it will only receive an `Iterator` for each
* invocation - the functor will need to then implement looping over the
* inner axes from the position provided in the `Iterator`.
*
* \sa Loop
* \sa Thread::run()
* \sa thread_queue
*
* @}
*/
namespace {
inline vector<size_t> get_inner_axes (const vector<size_t>& axes, size_t num_inner_axes) {
return { axes.begin(), axes.begin()+num_inner_axes };
}
inline vector<size_t> get_outer_axes (const vector<size_t>& axes, size_t num_inner_axes) {
return { axes.begin()+num_inner_axes, axes.end() };
}
template <class HeaderType>
inline vector<size_t> get_inner_axes (const HeaderType& source, size_t num_inner_axes, size_t from_axis, size_t to_axis) {
return get_inner_axes (Stride::order (source, from_axis, to_axis), num_inner_axes);
}
template <class HeaderType>
inline vector<size_t> get_outer_axes (const HeaderType& source, size_t num_inner_axes, size_t from_axis, size_t to_axis) {
return get_outer_axes (Stride::order (source, from_axis, to_axis), num_inner_axes);
}
template <int N, class Functor, class... ImageType>
struct ThreadedLoopRunInner
{ MEMALIGN(ThreadedLoopRunInner<N,Functor,ImageType...>)
const vector<size_t>& outer_axes;
decltype (Loop (outer_axes)) loop;
typename std::remove_reference<Functor>::type func;
std::tuple<ImageType...> vox;
ThreadedLoopRunInner (const vector<size_t>& outer_axes, const vector<size_t>& inner_axes,
const Functor& functor, ImageType&... voxels) :
outer_axes (outer_axes),
loop (Loop (inner_axes)),
func (functor),
vox (voxels...) { }
void operator() (const Iterator& pos) {
assign_pos_of (pos, outer_axes).to (vox);
for (auto i = unpack (loop, vox); i; ++i)
unpack (func, vox);
}
};
template <class Functor, class... ImageType>
struct ThreadedLoopRunInner<0,Functor,ImageType...>
{ MEMALIGN(ThreadedLoopRunInner<0, Functor,ImageType...>)
const vector<size_t>& outer_axes;
decltype (Loop (outer_axes)) loop;
typename std::remove_reference<Functor>::type func;
ThreadedLoopRunInner (const vector<size_t>& outer_axes, const vector<size_t>& inner_axes,
const Functor& functor, ImageType&... /*voxels*/) :
outer_axes (outer_axes),
loop (Loop (inner_axes)),
func (functor) { }
void operator() (Iterator& pos) {
for (auto i = loop (pos); i; ++i)
func (pos);
}
};
inline void __manage_progress (...) { }
template <class LoopType, class ThreadType>
inline auto __manage_progress (const LoopType* loop, const ThreadType* threads)
-> decltype((void) (&loop->progress), void())
{
loop->progress.run_update_thread (*threads);
}
template <class OuterLoopType>
struct ThreadedLoopRunOuter { MEMALIGN(ThreadedLoopRunOuter<OuterLoopType>)
Iterator iterator;
OuterLoopType outer_loop;
vector<size_t> inner_axes;
//! invoke \a functor (const Iterator& pos) per voxel <em> in the outer axes only</em>
template <class Functor>
void run_outer (Functor&& functor)
{
if (Thread::threads_to_execute() == 0) {
for (auto i = outer_loop (iterator); i; ++i)
functor (iterator);
return;
}
std::mutex mutex;
ProgressBar::SwitchToMultiThreaded progress_functions;
struct Shared { MEMALIGN(Shared)
Iterator& iterator;
decltype (outer_loop (iterator)) loop;
std::mutex& mutex;
FORCE_INLINE bool next (Iterator& pos) {
std::lock_guard<std::mutex> lock (mutex);
if (loop) {
assign_pos_of (iterator, loop.axes).to (pos);
++loop;
return true;
}
else return false;
}
} shared = { iterator, outer_loop (iterator), mutex };
struct PerThread { MEMALIGN(PerThread)
Shared& shared;
typename std::remove_reference<Functor>::type func;
void execute () {
Iterator pos = shared.iterator;
while (shared.next (pos))
func (pos);
}
} loop_thread = { shared, functor };
auto threads = Thread::run (Thread::multi (loop_thread), "loop threads");
__manage_progress (&shared.loop, &threads);
threads.wait();
}
//! invoke \a functor (const Iterator& pos) per voxel <em> in the outer axes only</em>
template <class Functor, class... ImageType>
void run (Functor&& functor, ImageType&&... vox)
{
ThreadedLoopRunInner<
sizeof...(ImageType),
typename std::remove_reference<Functor>::type,
typename std::remove_reference<ImageType>::type...
> loop_thread (outer_loop.axes, inner_axes, functor, vox...);
run_outer (loop_thread);
check_app_exit_code();
}
};
}
//! Multi-threaded loop object
//* \sa image_thread_looping for details */
template <class HeaderType>
inline ThreadedLoopRunOuter<decltype(Loop(vector<size_t>()))>
ThreadedLoop (
const HeaderType& source,
const vector<size_t>& outer_axes,
const vector<size_t>& inner_axes)
{ return { source, Loop (outer_axes), inner_axes }; }
//! Multi-threaded loop object
//* \sa image_thread_looping for details */
template <class HeaderType>
inline ThreadedLoopRunOuter<decltype(Loop(vector<size_t>()))>
ThreadedLoop (
const HeaderType& source,
const vector<size_t>& axes,
size_t num_inner_axes = 1)
{ return { source, Loop (get_outer_axes (axes, num_inner_axes)), get_inner_axes (axes, num_inner_axes) }; }
//! Multi-threaded loop object
//* \sa image_thread_looping for details */
template <class HeaderType>
inline ThreadedLoopRunOuter<decltype(Loop(vector<size_t>()))>
ThreadedLoop (
const HeaderType& source,
size_t from_axis = 0,
size_t to_axis = std::numeric_limits<size_t>::max(),
size_t num_inner_axes = 1)
{
return { source,
Loop (get_outer_axes (source, num_inner_axes, from_axis, to_axis)),
get_inner_axes (source, num_inner_axes, from_axis, to_axis) };
}
//! Multi-threaded loop object
//* \sa image_thread_looping for details */
template <class HeaderType>
inline ThreadedLoopRunOuter<decltype(Loop("", vector<size_t>()))>
ThreadedLoop (
const std::string& progress_message,
const HeaderType& source,
const vector<size_t>& outer_axes,
const vector<size_t>& inner_axes)
{ return { source, Loop (progress_message, outer_axes), inner_axes }; }
//! Multi-threaded loop object
//* \sa image_thread_looping for details */
template <class HeaderType>
inline ThreadedLoopRunOuter<decltype(Loop("", vector<size_t>()))>
ThreadedLoop (
const std::string& progress_message,
const HeaderType& source,
const vector<size_t>& axes,
size_t num_inner_axes = 1)
{
return { source,
Loop (progress_message, get_outer_axes (axes, num_inner_axes)),
get_inner_axes (axes, num_inner_axes) };
}
//! Multi-threaded loop object
//* \sa image_thread_looping for details */
template <class HeaderType>
inline ThreadedLoopRunOuter<decltype(Loop("", vector<size_t>()))>
ThreadedLoop (
const std::string& progress_message,
const HeaderType& source,
size_t from_axis = 0,
size_t to_axis = std::numeric_limits<size_t>::max(),
size_t num_inner_axes = 1)
{
return { source,
Loop (progress_message, get_outer_axes (source, num_inner_axes, from_axis, to_axis)),
get_inner_axes (source, num_inner_axes, from_axis, to_axis) };
}
}
#endif
|