1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
|
/* Copyright (c) 2008-2022 the MRtrix3 contributors.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* Covered Software is provided under this License on an "as is"
* basis, without warranty of any kind, either expressed, implied, or
* statutory, including, without limitation, warranties that the
* Covered Software is free of defects, merchantable, fit for a
* particular purpose or non-infringing.
* See the Mozilla Public License v. 2.0 for more details.
*
* For more details, see http://www.mrtrix.org/.
*/
#include "dwi/gradient.h"
#include "file/nifti_utils.h"
#include "dwi/shells.h"
namespace MR
{
namespace DWI
{
using namespace App;
using namespace Eigen;
OptionGroup GradImportOptions()
{
OptionGroup group ("DW gradient table import options");
group
+ Option ("grad",
"Provide the diffusion-weighted gradient scheme used in the acquisition "
"in a text file. This should be supplied as a 4xN text file with each line "
"is in the format [ X Y Z b ], where [ X Y Z ] describe the direction of the "
"applied gradient, and b gives the b-value in units of s/mm^2. If a diffusion "
"gradient scheme is present in the input image header, the data provided with "
"this option will be instead used.")
+ Argument ("file").type_file_in()
+ Option ("fslgrad",
"Provide the diffusion-weighted gradient scheme used in the acquisition in FSL "
"bvecs/bvals format files. If a diffusion gradient scheme is present in the "
"input image header, the data provided with this option will be instead used.")
+ Argument ("bvecs").type_file_in()
+ Argument ("bvals").type_file_in();
return group;
}
OptionGroup GradExportOptions()
{
return OptionGroup ("DW gradient table export options")
+ Option ("export_grad_mrtrix", "export the diffusion-weighted gradient table to file in MRtrix format")
+ Argument ("path").type_file_out()
+ Option ("export_grad_fsl", "export the diffusion-weighted gradient table to files in FSL (bvecs / bvals) format")
+ Argument ("bvecs_path").type_file_out()
+ Argument ("bvals_path").type_file_out();
}
Option bvalue_scaling_option = Option ("bvalue_scaling",
"enable or disable scaling of diffusion b-values by the square of the "
"corresponding DW gradient norm (see Desciption). "
"Valid choices are yes/no, true/false, 0/1 (default: automatic).")
+ Argument ("mode").type_bool();
const char* const bvalue_scaling_description (
"The -bvalue_scaling option controls an aspect of the import of "
"diffusion gradient tables. When the input diffusion-weighting "
"direction vectors have norms that differ substantially from unity, "
"the b-values will be scaled by the square of their corresponding "
"vector norm (this is how multi-shell acquisitions are frequently "
"achieved on scanner platforms). However in some rare instances, the "
"b-values may be correct, despite the vectors not being of unit norm "
"(or conversely, the b-values may need to be rescaled even though the "
"vectors are close to unit norm). This option allows the user to "
"control this operation and override MRrtix3's automatic detection."
);
BValueScalingBehaviour get_cmdline_bvalue_scaling_behaviour ()
{
auto opt = App::get_options ("bvalue_scaling");
if (opt.empty())
return BValueScalingBehaviour::Auto;
if (opt[0][0])
return BValueScalingBehaviour::UserOn;
return BValueScalingBehaviour::UserOff;
}
Eigen::MatrixXd parse_DW_scheme (const Header& header)
{
Eigen::MatrixXd G;
const auto it = header.keyval().find ("dw_scheme");
if (it != header.keyval().end()) {
try {
G = parse_matrix (it->second);
} catch (Exception& e) {
throw Exception (e, "malformed DW scheme in image \"" + header.name() + "\"");
}
}
return G;
}
Eigen::MatrixXd load_bvecs_bvals (const Header& header, const std::string& bvecs_path, const std::string& bvals_path)
{
Eigen::MatrixXd bvals, bvecs;
try {
bvals = load_matrix<> (bvals_path);
bvecs = load_matrix<> (bvecs_path);
} catch (Exception& e) {
throw Exception (e, "Unable to import files \"" + bvecs_path + "\" and \"" + bvals_path + "\" as FSL bvecs/bvals pair");
}
if (bvals.rows() != 1) {
if (bvals.cols() == 1)
bvals.transposeInPlace(); // transpose if file contains column vector
else
throw Exception ("bvals file must contain 1 row or column only (file \"" + bvals_path + "\" has " + str(bvals.rows()) + ")");
}
if (bvecs.rows() != 3) {
if (bvecs.cols() == 3)
bvecs.transposeInPlace();
else
throw Exception ("bvecs file must contain exactly 3 rows or columns (file \"" + bvecs_path + "\" has " + str(bvecs.rows()) + ")");
}
if (bvals.cols() != bvecs.cols())
throw Exception ("bvecs and bvals files must have same number of diffusion directions (file \"" + bvecs_path + "\" has " + str(bvecs.cols()) + ", file \"" + bvals_path + "\" has " + str(bvals.cols()) + ")");
const size_t num_volumes = header.ndim() < 4 ? 1 : header.size(3);
if (size_t(bvals.cols()) != num_volumes)
throw Exception ("bvecs and bvals files must have same number of diffusion directions as DW-image (gradients: " + str(bvecs.cols()) + ", image: " + str(num_volumes) + ")");
// bvecs format actually assumes a LHS coordinate system even if image is
// stored using RHS - x axis is flipped to make linear 3x3 part of
// transform have negative determinant:
vector<size_t> order;
auto adjusted_transform = File::NIfTI::adjust_transform (header, order);
if (adjusted_transform.linear().determinant() > 0.0)
bvecs.row(0) = -bvecs.row(0);
// account for the fact that bvecs are specified wrt original image axes,
// which may have been re-ordered and/or inverted by MRtrix to match the
// expected anatomical frame of reference:
Eigen::MatrixXd G (bvecs.cols(), 3);
for (ssize_t n = 0; n < G.rows(); ++n) {
G(n,order[0]) = header.stride(order[0]) > 0 ? bvecs(0,n) : -bvecs(0,n);
G(n,order[1]) = header.stride(order[1]) > 0 ? bvecs(1,n) : -bvecs(1,n);
G(n,order[2]) = header.stride(order[2]) > 0 ? bvecs(2,n) : -bvecs(2,n);
}
// rotate gradients into scanner coordinate system:
Eigen::MatrixXd grad (G.rows(), 4);
grad.leftCols<3>().transpose() = header.transform().rotation() * G.transpose();
grad.col(3) = bvals.row(0);
return grad;
}
void save_bvecs_bvals (const Header& header, const std::string& bvecs_path, const std::string& bvals_path)
{
const auto grad = parse_DW_scheme (header);
// rotate vectors from scanner space to image space
Eigen::MatrixXd G = grad.leftCols<3>() * header.transform().rotation();
// deal with FSL requiring gradient directions to coincide with data strides
// also transpose matrices in preparation for file output
vector<size_t> order;
auto adjusted_transform = File::NIfTI::adjust_transform (header, order);
Eigen::MatrixXd bvecs (3, grad.rows());
Eigen::MatrixXd bvals (1, grad.rows());
for (ssize_t n = 0; n < G.rows(); ++n) {
bvecs(0,n) = header.stride(order[0]) > 0 ? G(n,order[0]) : -G(n,order[0]);
bvecs(1,n) = header.stride(order[1]) > 0 ? G(n,order[1]) : -G(n,order[1]);
bvecs(2,n) = header.stride(order[2]) > 0 ? G(n,order[2]) : -G(n,order[2]);
bvals(0,n) = grad(n,3);
}
// bvecs format actually assumes a LHS coordinate system even if image is
// stored using RHS - x axis is flipped to make linear 3x3 part of
// transform have negative determinant:
if (adjusted_transform.linear().determinant() > 0.0)
bvecs.row(0) = -bvecs.row(0);
save_matrix (bvecs, bvecs_path, KeyValues(), false);
save_matrix (bvals, bvals_path, KeyValues(), false);
}
void clear_DW_scheme (Header& header)
{
auto it = header.keyval().find ("dw_scheme");
if (it != header.keyval().end())
header.keyval().erase (it);
}
Eigen::MatrixXd get_raw_DW_scheme (const Header& header)
{
DEBUG ("searching for suitable gradient encoding...");
using namespace App;
Eigen::MatrixXd grad;
// check whether the DW scheme has been provided via the command-line:
const auto opt_mrtrix = get_options ("grad");
if (opt_mrtrix.size())
grad = load_matrix<> (opt_mrtrix[0][0]);
const auto opt_fsl = get_options ("fslgrad");
if (opt_fsl.size()) {
if (opt_mrtrix.size())
throw Exception ("Diffusion gradient table can be provided using either -grad or -fslgrad option, but NOT both");
grad = load_bvecs_bvals (header, opt_fsl[0][0], opt_fsl[0][1]);
}
// otherwise use the information from the header:
if (!opt_mrtrix.size() && !opt_fsl.size())
grad = parse_DW_scheme (header);
return grad;
}
Eigen::MatrixXd get_DW_scheme (const Header& header, BValueScalingBehaviour bvalue_scaling)
{
try {
auto grad = get_raw_DW_scheme (header);
check_DW_scheme (header, grad);
Eigen::Array<default_type, Eigen::Dynamic, 1> squared_norms = grad.leftCols(3).rowwise().squaredNorm();
// ensure interpreted directions are always normalised
// also make sure that directions of [0, 0, 0] don't affect subsequent calculations
bool warnambiguous = false;
for (ssize_t row = 0; row != grad.rows(); ++row) {
if (squared_norms[row])
grad.row(row).template head<3>().array() /= std::sqrt(squared_norms[row]);
else
warnambiguous = warnambiguous || ( grad.row(row)[3] > bzero_threshold() );
}
// modulate verbosity of message & whether or not header is modified
// based on magnitude of effect of normalisation
const default_type max_log_scaling_factor = squared_norms.unaryExpr ([](double v) {
return v > 0.0 ? abs(log(v)) : 0.0; }).maxCoeff();
const default_type max_scaling_factor = std::exp (max_log_scaling_factor);
const bool exceeds_single_precision = max_log_scaling_factor > 1e-5;
const bool requires_bvalue_scaling = max_log_scaling_factor > 0.01;
DEBUG ("b-value scaling: max scaling factor = exp("
+ str(max_log_scaling_factor) + ") = " + str(max_scaling_factor));
if (( requires_bvalue_scaling && bvalue_scaling == BValueScalingBehaviour::Auto ) ||
bvalue_scaling == BValueScalingBehaviour::UserOn ) {
grad.col(3).array() *= squared_norms;
if (warnambiguous)
WARN ("Ambiguous [ 0 0 0 non-zero ] entries found in DW gradient table. "
"These will be interpreted as b=0 volumes unless -bvalue_scaling is disabled.");
INFO ("b-values scaled by the square of DW gradient norm "
"(maximum scaling factor = " + str(max_scaling_factor) + ")");
}
else if (bvalue_scaling == BValueScalingBehaviour::UserOff ) {
if (requires_bvalue_scaling) {
CONSOLE ("disabling b-value scaling during normalisation of DW vectors on user request "
"(maximum scaling factor would have been " + str(max_scaling_factor) + ")");
} else {
WARN ("use of -bvalue_scaling option had no effect: gradient vector norms are all within tolerance "
"(maximum scaling factor = " + str(max_scaling_factor) + ")");
}
}
// write the scheme as interpreted back into the header if:
// - vector normalisation effect is large, regardless of whether or not b-value scaling was applied
// - gradient information was pulled from file
// - explicit b-value scaling is requested
if (exceeds_single_precision || get_options ("grad").size() || get_options ("fslgrad").size() || bvalue_scaling != BValueScalingBehaviour::Auto)
set_DW_scheme (const_cast<Header&> (header), grad);
INFO ("found " + str (grad.rows()) + "x" + str (grad.cols()) + " diffusion gradient table");
return grad;
}
catch (Exception& e) {
clear_DW_scheme (const_cast<Header&> (header));
throw Exception (e, "error importing diffusion gradient table for image \"" + header.name() + "\"");
}
}
void export_grad_commandline (const Header& header)
{
auto check = [](const Header& h) -> const Header& {
if (h.keyval().find("dw_scheme") == h.keyval().end())
throw Exception ("no gradient information found within image \"" + h.name() + "\"");
return h;
};
auto opt = get_options ("export_grad_mrtrix");
if (opt.size())
save_matrix (parse_DW_scheme (check (header)), opt[0][0]);
opt = get_options ("export_grad_fsl");
if (opt.size())
save_bvecs_bvals (check (header), opt[0][0], opt[0][1]);
}
}
}
|