1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
|
/* Copyright (c) 2008-2022 the MRtrix3 contributors.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* Covered Software is provided under this License on an "as is"
* basis, without warranty of any kind, either expressed, implied, or
* statutory, including, without limitation, warranties that the
* Covered Software is free of defects, merchantable, fit for a
* particular purpose or non-infringing.
* See the Mozilla Public License v. 2.0 for more details.
*
* For more details, see http://www.mrtrix.org/.
*/
#include <algorithm>
#include "header.h"
#include "phase_encoding.h"
#include "image_io/default.h"
#include "image_io/mosaic.h"
#include "image_io/variable_scaling.h"
#include "file/dicom/mapper.h"
#include "file/dicom/image.h"
#include "file/dicom/series.h"
#include "file/dicom/study.h"
#include "file/dicom/patient.h"
#include "file/dicom/tree.h"
namespace MR {
namespace File {
namespace Dicom {
std::unique_ptr<MR::ImageIO::Base> dicom_to_mapper (MR::Header& H, vector<std::shared_ptr<Series>>& series)
{
//ENVVAR name: MRTRIX_PRESERVE_PHILIPS_ISO
//ENVVAR Do not remove the synthetic isotropically-weighted diffusion
//ENVVAR image often added at the end of the series on Philips
//ENVVAR scanners. By default, these images are removed from the series
//ENVVAR to prevent errors in downstream processing. If this
//ENVVAR environment variable is set, these images will be preserved in
//ENVVAR the output.
//ENVVAR
//ENVVAR Note that it can be difficult to ascertain which volume is the
//ENVVAR synthetic isotropically-weighed image, since its DW encoding
//ENVVAR will normally have been modified from its initial value
//ENVVAR (e.g. [ 0 0 0 1000 ] for a b=1000 acquisition) to b=0 due to
//ENVVAR b-value scaling.
bool preserve_philips_iso = ( getenv ("MRTRIX_PRESERVE_PHILIPS_ISO") != nullptr );
assert (series.size() > 0);
std::unique_ptr<MR::ImageIO::Base> io_handler;
Patient* patient (series[0]->study->patient);
std::string sbuf = ( patient->name.size() ? patient->name : "unnamed" );
sbuf += " " + format_ID (patient->ID);
if (series[0]->modality.size())
sbuf += std::string (" [") + series[0]->modality + "]";
if (series[0]->name.size())
sbuf += std::string (" ") + series[0]->name;
add_line (H.keyval()["comments"], sbuf);
H.name() = sbuf;
// build up sorted list of frames:
vector<Frame*> frames;
// loop over series list:
for (const auto& series_it : series) {
try {
series_it->read();
}
catch (Exception& E) {
E.display();
throw Exception ("error reading series " + str (series_it->number) + " of DICOM image \"" + H.name() + "\"");
}
std::sort (series_it->begin(), series_it->end(), compare_ptr_contents());
// loop over images in each series:
for (auto image_it : *series_it) {
if (!image_it->transfer_syntax_supported) {
Exception E ("unsupported transfer syntax found in DICOM data");
E.push_back ("consider using third-party tools to convert your data to standard uncompressed encoding");
E.push_back ("See the MRtrix3 documentation on DICOM handling for details:");
E.push_back (" http://mrtrix.readthedocs.io/en/latest/tips_and_tricks/dicom_handling.html#error-unsupported-transfer-syntax");
throw E;
}
// if multi-frame, loop over frames in image:
if (image_it->frames.size()) {
std::sort (image_it->frames.begin(), image_it->frames.end(), compare_ptr_contents());
for (auto frame_it : image_it->frames)
if (frame_it->image_type == series_it->image_type)
if (!frame_it->is_philips_iso() || preserve_philips_iso)
frames.push_back (frame_it.get());
}
// otherwise add image frame:
else
if (!image_it->is_philips_iso() || preserve_philips_iso)
frames.push_back (image_it.get());
}
}
if (!frames.size())
throw Exception ("no DICOM frames found!");
auto dim = Frame::count (frames);
if (dim[0]*dim[1]*dim[2] < frames.size())
throw Exception ("dimensions mismatch in DICOM series");
if (dim[0]*dim[1]*dim[2] > frames.size())
throw Exception ("missing image frames for DICOM image \"" + H.name() + "\"");
if (dim[0] > 1) { // switch axes so slice dim is inner-most:
vector<Frame*> list (frames);
vector<Frame*>::iterator it = frames.begin();
for (size_t k = 0; k < dim[2]; ++k)
for (size_t i = 0; i < dim[0]; ++i)
for (size_t j = 0; j < dim[1]; ++j)
*(it++) = list[i+dim[0]*(j+dim[1]*k)];
}
default_type slice_separation = Frame::get_slice_separation (frames, dim[1]);
if (series[0]->study->name.size())
add_line (H.keyval()["comments"], std::string ("study: " + series[0]->study->name + " [ " + series[0]->image_type + " ]"));
if (patient->DOB.size())
add_line (H.keyval()["comments"], std::string ("DOB: " + format_date (patient->DOB)));
if (series[0]->date.size()) {
sbuf = "DOS: " + format_date (series[0]->date);
if (series[0]->time.size())
sbuf += " " + format_time (series[0]->time);
add_line (H.keyval()["comments"], sbuf);
}
const Image& image (*(*series[0])[0]);
const Frame& frame (*frames[0]);
// If the value of the parameter changes for every volume,
// write the values as a comma-separated list to the header
auto import_parameter = [&] (const std::string key,
std::function<default_type(Frame*)> functor,
const default_type multiplier) -> void
{
vector<std::string> values;
for (const auto f : frames) {
const default_type value = functor (f);
if (!std::isfinite (value))
return;
const std::string value_string = str(multiplier * value, 6);
if (values.empty() || value_string != values.back())
values.push_back (value_string);
}
if (values.size())
H.keyval()[key] = join(values, ",");
};
import_parameter ("EchoTime",
[] (Frame* f) -> default_type { return f->echo_time; },
0.001);
import_parameter ("FlipAngle",
[] (Frame* f) -> default_type { return f->flip_angle; },
1.0);
import_parameter ("InversionTime",
[] (Frame* f) -> default_type { return f->inversion_time; },
0.001);
import_parameter ("PartialFourier",
[] (Frame* f) -> default_type { return f->partial_fourier; },
1.0);
import_parameter ("PixelBandwidth",
[] (Frame* f) -> default_type { return f->pixel_bandwidth; },
1.0);
import_parameter ("RepetitionTime",
[] (Frame* f) -> default_type { return f->repetition_time; },
0.001);
if (std::isfinite (frame.bvalue)) {
if (frame.bipolar_flag) {
switch (frame.bipolar_flag) {
case 1: H.keyval()["DiffusionScheme"] = "Bipolar"; break;
case 2: H.keyval()["DiffusionScheme"] = "Monopolar"; break;
default: WARN("Unsupported DWI polarity scheme flag (" + str(frame.bipolar_flag) + ")");
}
} else if (frame.readoutmode_flag) {
switch (frame.readoutmode_flag) {
case 1: H.keyval()["DiffusionScheme"] = "Monopolar"; break;
case 2: H.keyval()["DiffusionScheme"] = "Bipolar"; break;
default: WARN("Unsupported DWI readout mode flag (" + str(frame.readoutmode_flag) + ")");
}
}
}
if (frame.flip_angles.size() > 1) {
// Are all entries in the vector the same?
bool all_equal = true;
for (size_t index = 1; index != frame.flip_angles.size(); ++index) {
if (frame.flip_angles[index] != frame.flip_angles[0]) {
all_equal = false;
break;
}
}
if (!all_equal)
H.keyval()["FlipAngle"] = join (frame.flip_angles, ",");
}
size_t nchannels = image.samples_per_pixel;
if (nchannels == 1 && !image.frames.size()) {
// only guess number of samples per pixel if not explicitly set in
// DICOM and not using multi-frame:
nchannels = image.data_size / (frame.dim[0] * frame.dim[1] * (frame.bits_alloc/8));
if (nchannels > 1)
INFO ("data segment is larger than expected from image dimensions - interpreting as multi-channel data");
}
H.ndim() = 3 + (dim[0]*dim[2]>1) + (nchannels>1);
size_t current_axis = 0;
if (nchannels > 1) {
H.stride(3) = 1;
H.size(3) = nchannels;
++current_axis;
}
H.stride(0) = ++current_axis;
H.size(0) = frame.dim[0];
H.spacing(0) = frame.pixel_size[0];
H.stride(1) = ++current_axis;
H.size(1) = frame.dim[1];
H.spacing(1) = frame.pixel_size[1];
H.stride(2) = ++current_axis;
H.size(2) = dim[1];
H.spacing(2) = slice_separation;
if (dim[0]*dim[2] > 1) {
H.stride(current_axis) = current_axis+1;
H.size(current_axis) = dim[0]*dim[2];
++current_axis;
}
if (frame.bits_alloc == 8)
H.datatype() = DataType::UInt8;
else if (frame.bits_alloc == 16) {
H.datatype() = DataType::UInt16;
if (image.is_BE)
H.datatype() = DataType::UInt16 | DataType::BigEndian;
else
H.datatype() = DataType::UInt16 | DataType::LittleEndian;
}
else throw Exception ("unexpected number of allocated bits per pixel (" + str (frame.bits_alloc)
+ ") in file \"" + H.name() + "\"");
H.set_intensity_scaling (frame.scale_slope, frame.scale_intercept);
// If multi-frame, take the transform information from the sorted frames; the first entry in the
// vector should be the first slice of the first volume
{
transform_type M;
M(0,0) = -frame.orientation_x[0];
M(1,0) = -frame.orientation_x[1];
M(2,0) = +frame.orientation_x[2];
M(0,1) = -frame.orientation_y[0];
M(1,1) = -frame.orientation_y[1];
M(2,1) = +frame.orientation_y[2];
M(0,2) = -frame.orientation_z[0];
M(1,2) = -frame.orientation_z[1];
M(2,2) = +frame.orientation_z[2];
M(0,3) = -frame.position_vector[0];
M(1,3) = -frame.position_vector[1];
M(2,3) = +frame.position_vector[2];
H.transform() = M;
std::string dw_scheme = Frame::get_DW_scheme (frames, dim[1], M);
if (dw_scheme.size())
H.keyval()["dw_scheme"] = dw_scheme;
}
try {
PhaseEncoding::set_scheme (H, Frame::get_PE_scheme (frames, dim[1]));
} catch (Exception& e) {
e.display (3);
WARN ("Malformed phase encoding information; ignored");
}
bool inconsistent_scaling = false;
for (size_t n = 1; n < frames.size(); ++n) { // check consistency of data scaling:
if (frames[n]->scale_intercept != frames[n-1]->scale_intercept ||
frames[n]->scale_slope != frames[n-1]->scale_slope) {
if (image.images_in_mosaic)
throw Exception ("unable to load series due to inconsistent data scaling between DICOM mosaic frames");
inconsistent_scaling = true;
INFO ("DICOM images contain inconsistency scaling - data will be rescaled and stored in 32-bit floating-point format");
break;
}
}
// Slice timing may come from a few different potential sources
vector<std::string> slices_timing_str;
vector<float> slices_timing_float;
if (image.images_in_mosaic) {
if (image.mosaic_slices_timing.size() < image.images_in_mosaic) {
WARN ("Number of entries in mosaic slice timing (" + str(image.mosaic_slices_timing.size()) + ") is smaller than number of images in mosaic (" + str(image.images_in_mosaic) + "); omitting");
} else {
DEBUG ("Taking slice timing information from CSA mosaic info");
// CSA mosaic defines these in ms; we want them in s
// We also want to avoid floating-point precision issues resulting from
// base-10 scaling
for (size_t n = 0; n < image.images_in_mosaic; ++n) {
slices_timing_float.push_back (0.001 * image.mosaic_slices_timing[n]);
std::string temp = str(int(10.0 * image.mosaic_slices_timing[n]));
const bool neg = image.mosaic_slices_timing[n] < 0.0;
if (neg)
temp.erase (temp.begin());
while (temp.size() < 5)
temp.insert (temp.begin(), '0');
temp.insert (temp.begin() + temp.size() - 4, '.');
if (neg)
temp.insert (temp.begin(), '-');
slices_timing_str.push_back (temp);
}
}
} else if (std::isfinite (frame.time_after_start)) {
DEBUG ("Taking slice timing information from CSA TimeAfterStart field");
default_type min_time_after_start = std::numeric_limits<default_type>::infinity();
for (size_t n = 0; n != dim[1]; ++n)
min_time_after_start = std::min (min_time_after_start, frames[n]->time_after_start);
for (size_t n = 0; n != dim[1]; ++n)
slices_timing_float.push_back (frames[n]->time_after_start - min_time_after_start);
} else if (std::isfinite (static_cast<default_type>(frame.acquisition_time))) {
DEBUG ("Estimating slice timing from DICOM AcquisitionTime field");
default_type min_acquisition_time = std::numeric_limits<default_type>::infinity();
for (size_t n = 0; n != dim[1]; ++n)
min_acquisition_time = std::min (min_acquisition_time, default_type(frames[n]->acquisition_time));
for (size_t n = 0; n != dim[1]; ++n)
slices_timing_float.push_back (default_type(frames[n]->acquisition_time) - min_acquisition_time);
}
if (slices_timing_float.size()) {
const size_t slices_acquired_at_zero = std::count (slices_timing_float.begin(), slices_timing_float.end(), 0.0f);
if (slices_acquired_at_zero < (image.images_in_mosaic ? image.images_in_mosaic : dim[1])) {
H.keyval()["SliceTiming"] = slices_timing_str.size() ?
join (slices_timing_str, ",") :
join (slices_timing_float, ",");
H.keyval()["MultibandAccelerationFactor"] = str (slices_acquired_at_zero);
H.keyval()["SliceEncodingDirection"] = "k";
} else {
DEBUG ("All slices acquired at same time; not writing slice encoding information");
}
} else {
DEBUG ("No slice timing information obtained");
}
if (image.images_in_mosaic) {
INFO ("DICOM image \"" + H.name() + "\" is in mosaic format");
if (H.size (2) != 1)
throw Exception ("DICOM mosaic contains multiple slices in image \"" + H.name() + "\"");
size_t mosaic_size = std::ceil (std::sqrt (image.images_in_mosaic));
H.size(0) = std::floor (frame.dim[0] / mosaic_size);
H.size(1) = std::floor (frame.dim[1] / mosaic_size);
H.size(2) = image.images_in_mosaic;
if (frame.acq_dim[0] > size_t(H.size(0)) || frame.acq_dim[1] > size_t(H.size(1))) {
WARN ("acquisition matrix [ " + str (frame.acq_dim[0]) + " " + str (frame.acq_dim[1])
+ " ] is smaller than expected [ " + str(H.size(0)) + " " + str(H.size(1)) + " ] in DICOM mosaic");
WARN (" image may be incorrectly reformatted");
}
if (H.size(0)*mosaic_size != frame.dim[0] || H.size(1)*mosaic_size != frame.dim[1]) {
WARN ("dimensions of DICOM mosaic [ " + str(frame.dim[0]) + " " + str(frame.dim[1])
+ " ] do not match expected size [ " + str(H.size(0)*mosaic_size) + " " + str(H.size(0)*mosaic_size) + " ]");
WARN (" assuming data are stored as " + str(mosaic_size)+"x"+str(mosaic_size) + " mosaic of " + str(H.size(0))+"x"+ str(H.size(1)) + " slices.");
WARN (" image may be incorrectly reformatted");
}
if (frame.acq_dim[0] != size_t(H.size(0)) || frame.acq_dim[1] != size_t(H.size(1)))
INFO ("note: acquisition matrix [ " + str (frame.acq_dim[0]) + " " + str (frame.acq_dim[1])
+ " ] differs from reconstructed matrix [ " + str(H.size(0)) + " " + str(H.size(1)) + " ]");
float xinc = H.spacing(0) * (frame.dim[0] - H.size(0)) / 2.0;
float yinc = H.spacing(1) * (frame.dim[1] - H.size(1)) / 2.0;
for (size_t i = 0; i < 3; i++)
H.transform()(i,3) += xinc * H.transform()(i,0) + yinc * H.transform()(i,1);
io_handler.reset (new MR::ImageIO::Mosaic (H, frame.dim[0], frame.dim[1], H.size (0), H.size (1), H.size (2)));
}
else if (inconsistent_scaling) {
H.reset_intensity_scaling();
H.datatype() = DataType::Float32;
H.datatype().set_byte_order_native();
MR::ImageIO::VariableScaling* handler = new MR::ImageIO::VariableScaling (H);
for (size_t n = 0; n < frames.size(); ++n)
handler->scale_factors.push_back ({ frames[n]->scale_intercept, frames[n]->scale_slope });
io_handler.reset (handler);
}
else {
io_handler.reset (new MR::ImageIO::Default (H));
}
for (size_t n = 0; n < frames.size(); ++n)
io_handler->files.push_back (File::Entry (frames[n]->filename, frames[n]->data));
return io_handler;
}
}
}
}
|