1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664
|
/* Copyright (c) 2008-2022 the MRtrix3 contributors.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* Covered Software is provided under this License on an "as is"
* basis, without warranty of any kind, either expressed, implied, or
* statutory, including, without limitation, warranties that the
* Covered Software is free of defects, merchantable, fit for a
* particular purpose or non-infringing.
* See the Mozilla Public License v. 2.0 for more details.
*
* For more details, see http://www.mrtrix.org/.
*/
#ifndef __image_helpers_h__
#define __image_helpers_h__
#include "datatype.h"
#include "apply.h"
#include "debug.h"
namespace MR
{
//! \cond skip
namespace {
template <class AxesType>
FORCE_INLINE auto __ndim (const AxesType& axes) -> decltype (axes.size(), size_t()) { return axes.size(); }
template <class AxesType>
FORCE_INLINE auto __ndim (const AxesType& axes) -> decltype (axes.ndim(), size_t()) { return axes.ndim(); }
template <class AxesType>
FORCE_INLINE auto __get_index (const AxesType& axes, size_t axis) -> decltype (axes.size(), ssize_t())
{ return axes[axis]; }
template <class AxesType>
FORCE_INLINE auto __get_index (const AxesType& axes, size_t axis) -> decltype (axes.ndim(), ssize_t())
{ return axes.index(axis); }
template <class AxesType>
FORCE_INLINE auto __set_index (AxesType& axes, size_t axis, ssize_t index) -> decltype (axes.size(), void())
{ axes[axis] = index; }
template <class AxesType>
FORCE_INLINE auto __set_index (AxesType& axes, size_t axis, ssize_t index) -> decltype (axes.ndim(), void())
{ axes.index(axis) = index; }
template <class... DestImageType>
struct __assign { NOMEMALIGN
__assign (size_t axis, ssize_t index) : axis (axis), index (index) { }
const size_t axis;
const ssize_t index;
template <class ImageType>
FORCE_INLINE void operator() (ImageType& x) { __set_index (x, axis, index); }
};
template <class... DestImageType>
struct __assign<std::tuple<DestImageType...>> { NOMEMALIGN
__assign (size_t axis, ssize_t index) : axis (axis), index (index) { }
const size_t axis;
const ssize_t index;
template <class ImageType>
FORCE_INLINE void operator() (ImageType& x) { apply (__assign<DestImageType...> (axis, index), x); }
};
template <class... DestImageType>
struct __max_axis { NOMEMALIGN
__max_axis (size_t& axis) : axis (axis) { }
size_t& axis;
template <class ImageType>
FORCE_INLINE void operator() (ImageType& x) { if (axis > __ndim(x)) axis = __ndim(x); }
};
template <class... DestImageType>
struct __max_axis<std::tuple<DestImageType...>> { NOMEMALIGN
__max_axis (size_t& axis) : axis (axis) { }
size_t& axis;
template <class ImageType>
FORCE_INLINE void operator() (ImageType& x) { apply (__max_axis<DestImageType...> (axis), x); }
};
template <class ImageType>
struct __assign_pos_axis_range { NOMEMALIGN
template <class... DestImageType>
FORCE_INLINE void to (DestImageType&... dest) const {
size_t last_axis = to_axis;
apply (__max_axis<DestImageType...> (last_axis), std::tie (ref, dest...));
for (size_t n = from_axis; n < last_axis; ++n)
apply (__assign<DestImageType...> (n, __get_index (ref, n)), std::tie (dest...));
}
const ImageType& ref;
const size_t from_axis, to_axis;
};
template <class ImageType, typename IntType>
struct __assign_pos_axes { NOMEMALIGN
template <class... DestImageType>
FORCE_INLINE void to (DestImageType&... dest) const {
for (auto a : axes)
apply (__assign<DestImageType...> (a, __get_index (ref, a)), std::tie (dest...));
}
const ImageType& ref;
const vector<IntType> axes;
};
}
template <typename ValueType> class Image;
//! \endcond
//! convenience function for SFINAE on header types
template <class HeaderType, typename ReturnType>
struct enable_if_header_type { NOMEMALIGN
typedef decltype ((void) (
std::declval<HeaderType>().ndim() +
std::declval<HeaderType>().size(0) +
std::declval<HeaderType>().name().size()
), std::declval<ReturnType>()) type;
};
//! convenience function for SFINAE on header types
template<typename HeaderType>
class is_header_type { NOMEMALIGN
typedef char yes[1], no[2];
template<typename C> static yes& test(typename enable_if_header_type<HeaderType,int>::type);
template<typename C> static no& test(...);
public:
static bool const value = sizeof(test<HeaderType>(0)) == sizeof(yes);
};
//! convenience function for SFINAE on image types
template <class ImageType, typename ReturnType>
struct enable_if_image_type { NOMEMALIGN
typedef decltype ((void) (
std::declval<ImageType>().ndim() +
std::declval<ImageType>().size(0) +
std::declval<ImageType>().name().size() +
std::declval<ImageType>().value() +
std::declval<ImageType>().index(0)
), std::declval<ReturnType>()) type;
};
//! convenience function for SFINAE on image types
template<typename ImageType>
class is_image_type { NOMEMALIGN
typedef char yes[1], no[2];
template<typename C> static yes& test(typename enable_if_image_type<ImageType,int>::type);
template<typename C> static no& test(...);
public:
static bool const value = sizeof(test<ImageType>(0)) == sizeof(yes);
};
//! convenience function for SFINAE on images of type Image<ValueType>
template<class ImageType>
struct is_pure_image { NOMEMALIGN
static bool const value = std::is_same<ImageType, ::MR::Image<typename ImageType::value_type>>::value;
};
//! convenience function for SFINAE on images NOT of type Image<ValueType>
template<class ImageType>
struct is_adapter_type { NOMEMALIGN
static bool const value = is_image_type<ImageType>::value && !is_pure_image<ImageType>::value;
};
//! returns a functor to set the position in ref to other voxels
/*! this can be used as follows:
* \code
* assign_pos_of (src_image, 0, 3).to (dest_image1, dest_image2);
* \endcode
*
* This function will accept both ImageType objects (i.e. with ndim() &
* index(size_t) methods) or VectorType objects (i.e. with size() &
* operator[](size_t) methods). */
template <class ImageType>
FORCE_INLINE __assign_pos_axis_range<ImageType>
assign_pos_of (const ImageType& reference, size_t from_axis = 0, size_t to_axis = std::numeric_limits<size_t>::max())
{
return { reference, from_axis, to_axis };
}
//! returns a functor to set the position in ref to other voxels
/*! this can be used as follows:
* \code
* vector<int> axes = { 0, 3, 4 };
* assign_pos (src_image, axes) (dest_image1, dest_image2);
* \endcode
*
* This function will accept both ImageType objects (i.e. with ndim() &
* index(size_t) methods) or VectorType objects (i.e. with size() &
* operator[](size_t) methods). */
template <class ImageType, typename IntType>
FORCE_INLINE __assign_pos_axes<ImageType, IntType>
assign_pos_of (const ImageType& reference, const vector<IntType>& axes)
{
return { reference, axes };
}
template <class ImageType, typename IntType>
FORCE_INLINE __assign_pos_axes<ImageType, IntType>
assign_pos_of (const ImageType& reference, const vector<IntType>&& axes)
{
return assign_pos_of (reference, axes);
}
template <class ImageType>
FORCE_INLINE bool is_out_of_bounds (const ImageType& image,
size_t from_axis = 0, size_t to_axis = std::numeric_limits<size_t>::max())
{
for (size_t n = from_axis; n < std::min<size_t> (to_axis, image.ndim()); ++n)
if (image.index(n) < 0 || image.index(n) >= image.size(n))
return true;
return false;
}
template <class HeaderType, class VectorType>
FORCE_INLINE typename std::enable_if<!std::is_arithmetic<VectorType>::value, bool>::type is_out_of_bounds (const HeaderType& header, const VectorType& pos,
size_t from_axis = 0, size_t to_axis = std::numeric_limits<size_t>::max())
{
for (size_t n = from_axis; n < std::min<size_t> (to_axis, header.ndim()); ++n)
if (pos[n] < 0 || pos[n] >= header.size(n))
return true;
return false;
}
//! error if the image does not represent spatial data: need 3 spatial axes all with size greater than 1
//! requirement for anything that performs 3D interpolation, or erosion (& maybe others not thought of yet)
template <class HeaderType>
FORCE_INLINE void check_3D_nonunity (const HeaderType& in)
{
if (in.ndim() < 3)
throw Exception ("Image \"" + in.name() + "\" does not represent spatial data (less than 3 dimensions)");
if (std::min ({ in.size(0), in.size(1), in.size(2) }) == 1)
throw Exception ("Image \"" + in.name() + "\" does not represent spatial data (has axis with size 1)");
}
//! error if the image has dimensionality of at least \a N, allowing for higher singleton dimensions.
//! For example, [ x y z ], [ x y z 1 1 ] can both be considered 3D,
//! but [ x y z 1 n ] will throw an exception.
template <class HeaderType>
FORCE_INLINE void check_effective_dimensionality (const HeaderType& in, size_t N)
{
if (in.ndim() < N)
throw Exception ("Image \"" + in.name() + "\" does not represent " + str(N) + "D data (too few dimensions)");
for (size_t i = N; i < in.ndim(); ++i)
if (in.size(i) != 1)
throw Exception ("Image \"" + in.name() + "\" does not represent " + str(N) + "D data (axis " + str(i) + " has size " + str(in.size(i)) + ")");
}
//! returns the number of voxel in the data set, or a relevant subvolume
template <class HeaderType>
inline size_t voxel_count (const HeaderType& in, size_t from_axis = 0, size_t to_axis = std::numeric_limits<size_t>::max())
{
if (to_axis > in.ndim()) to_axis = in.ndim();
assert (from_axis < to_axis);
size_t fp = 1;
for (size_t n = from_axis; n < to_axis; ++n)
fp *= in.size (n);
return fp;
}
//! returns the number of voxel in the relevant subvolume of the data set
template <class HeaderType>
inline size_t voxel_count (const HeaderType& in, const char* specifier)
{
size_t fp = 1;
for (size_t n = 0; n < in.ndim(); ++n)
if (specifier[n] != ' ') fp *= in.size (n);
return fp;
}
//! returns the number of voxel in the relevant subvolume of the data set
template <class HeaderType>
inline size_t voxel_count (const HeaderType& in, const std::initializer_list<size_t> axes)
{
size_t fp = 1;
for (auto n : axes)
fp *= in.size (n);
return fp;
}
//! returns the number of voxel in the relevant subvolume of the data set
template <class HeaderType>
inline int64_t voxel_count (const HeaderType& in, const vector<size_t>& axes)
{
int64_t fp = 1;
for (size_t n = 0; n < axes.size(); ++n) {
assert (axes[n] < in.ndim());
fp *= in.size (axes[n]);
}
return fp;
}
template <typename ValueType>
inline int64_t footprint (int64_t count) {
return count * sizeof(ValueType);
}
template <>
inline int64_t footprint<bool> (int64_t count) {
return (count+7)/8;
}
inline int64_t footprint (int64_t count, DataType dtype) {
return dtype == DataType::Bit ? (count+7)/8 : count*dtype.bytes();
}
//! returns the memory footprint of an Image
template <class HeaderType>
inline typename std::enable_if<std::is_class<HeaderType>::value, int64_t>::type footprint (const HeaderType& in, size_t from_dim = 0, size_t up_to_dim = std::numeric_limits<size_t>::max()) {
return footprint (voxel_count (in, from_dim, up_to_dim), in.datatype());
}
//! returns the memory footprint of an Image
template <class HeaderType>
inline typename std::enable_if<std::is_class<HeaderType>::value, int64_t>::type footprint (const HeaderType& in, const char* specifier) {
return footprint (voxel_count (in, specifier), in.datatype());
}
template <class HeaderType1, class HeaderType2>
inline bool spacings_match (const HeaderType1& in1, const HeaderType2& in2, const double tol=0.0)
{
if (in1.ndim() != in2.ndim()) return false;
for (size_t n = 0; n < in1.ndim(); ++n)
if (abs(in1.spacing (n) - in2.spacing (n)) > tol * 0.5 * (in1.spacing (n) + in2.spacing (n))) return false;
return true;
}
template <class HeaderType1, class HeaderType2>
inline bool spacings_match (const HeaderType1& in1, const HeaderType2& in2, size_t from_axis, size_t to_axis, const double tol=0.0)
{
assert (from_axis < to_axis);
if (to_axis > in1.ndim() || to_axis > in2.ndim()) return false;
for (size_t n = from_axis; n < to_axis; ++n)
if (abs(in1.spacing (n) - in2.spacing (n)) > tol * 0.5 * (in1.spacing (n) + in2.spacing (n))) return false;
return true;
}
template <class HeaderType1, class HeaderType2>
inline bool spacings_match (const HeaderType1& in1, const HeaderType2& in2, const vector<size_t>& axes, const double tol=0.0)
{
for (size_t n = 0; n < axes.size(); ++n) {
if (in1.ndim() <= axes[n] || in2.ndim() <= axes[n]) return false;
if (abs(in1.spacing (axes[n]) - in2.spacing(axes[n])) > tol * 0.5 * (in1.spacing (axes[n]) + in2.spacing(axes[n]))) return false;
}
return true;
}
template <class HeaderType1, class HeaderType2>
inline bool dimensions_match (const HeaderType1& in1, const HeaderType2& in2)
{
if (in1.ndim() != in2.ndim()) return false;
for (size_t n = 0; n < in1.ndim(); ++n)
if (in1.size (n) != in2.size (n)) return false;
return true;
}
template <class HeaderType1, class HeaderType2>
inline bool dimensions_match (const HeaderType1& in1, const HeaderType2& in2, size_t from_axis, size_t to_axis)
{
assert (from_axis < to_axis);
if (to_axis > in1.ndim() || to_axis > in2.ndim()) return false;
for (size_t n = from_axis; n < to_axis; ++n)
if (in1.size (n) != in2.size (n)) return false;
return true;
}
template <class HeaderType1, class HeaderType2>
inline bool dimensions_match (const HeaderType1& in1, const HeaderType2& in2, const vector<size_t>& axes)
{
for (size_t n = 0; n < axes.size(); ++n) {
if (in1.ndim() <= axes[n] || in2.ndim() <= axes[n]) return false;
if (in1.size (axes[n]) != in2.size (axes[n])) return false;
}
return true;
}
namespace
{
template <class HeaderType>
std::string dim2str (const HeaderType& in)
{
std::string msg = str(in.size(0));
for (size_t axis = 1; axis != in.ndim(); ++axis)
msg += "," + str(in.size(axis));
return msg;
}
}
template <class HeaderType1, class HeaderType2>
inline void check_dimensions (const HeaderType1& in1, const HeaderType2& in2)
{
if (!dimensions_match (in1, in2))
throw Exception ("dimension mismatch between \"" + in1.name() + "\" and \"" + in2.name() + "\"" +
" (" + dim2str(in1) + " vs. " + dim2str(in2) + ")");
}
template <class HeaderType1, class HeaderType2>
inline void check_dimensions (const HeaderType1& in1, const HeaderType2& in2, size_t from_axis, size_t to_axis)
{
if (!dimensions_match (in1, in2, from_axis, to_axis))
throw Exception ("dimension mismatch between \"" + in1.name() + "\" and \"" + in2.name() + "\" between axes " + str(from_axis) + " and " + str(to_axis-1) +
" (" + dim2str(in1) + " vs. " + dim2str(in2) + ")");
}
template <class HeaderType1, class HeaderType2>
inline void check_dimensions (const HeaderType1& in1, const HeaderType2& in2, const vector<size_t>& axes)
{
if (!dimensions_match (in1, in2, axes))
throw Exception ("dimension mismatch between \"" + in1.name() + "\" and \"" + in2.name() + "\" for axes [" + join(axes, ",") + "]" +
" (" + dim2str(in1) + " vs. " + dim2str(in2) + ")");
}
template <class HeaderType1, class HeaderType2>
inline void check_voxel_grids_match_in_scanner_space (const HeaderType1& in1, const HeaderType2& in2, const double tol = 1.0e-3) {
Eigen::IOFormat FullPrecFmt(Eigen::FullPrecision, 0, ", ", "\n", "[", "]");
if (!voxel_grids_match_in_scanner_space (in1, in2, tol))
throw Exception ("images \"" + in1.name() + "\" and \"" + in2.name() + "\" do not have matching header transforms "
+ "\n" + str(in1.transform().matrix().format(FullPrecFmt))
+ "\nvs\n" + str(in2.transform().matrix().format(FullPrecFmt)) + ")");
}
//! returns true if the image to scanner transformation and voxel sizes of in1 and in2 are within tolerance
//! tol: tolerance of FOV corner displacement in voxel units
template <class HeaderType1, class HeaderType2>
inline bool voxel_grids_match_in_scanner_space (const HeaderType1 in1, const HeaderType2 in2,
const double tol = 1.0e-3) {
if (!dimensions_match(in1, in2, 0, 3))
return false;
const Eigen::Vector3d vs1 (in1.spacing(0), in1.spacing(1), in1.spacing(2));
const Eigen::Vector3d vs2 (in2.spacing(0), in2.spacing(1), in2.spacing(2));
Eigen::MatrixXd voxel_coord = Eigen::MatrixXd::Zero(4,4);
voxel_coord.row(3).fill(1.0);
voxel_coord(0,1) = voxel_coord(0,2) = 0.5 * (in1.size(0) + in2.size(0));
voxel_coord(1,1) = voxel_coord(1,3) = 0.5 * (in1.size(1) + in2.size(1));
voxel_coord(2,2) = voxel_coord(2,3) = 0.5 * (in1.size(2) + in2.size(2));
double diff_in_scannercoord = std::sqrt((vs1.asDiagonal() * in1.transform().matrix() * voxel_coord -
vs2.asDiagonal() * in2.transform().matrix() * voxel_coord).colwise().squaredNorm().maxCoeff());
DEBUG ("transforms_match: FOV difference in scanner coordinates: "+str(diff_in_scannercoord));
return diff_in_scannercoord < (0.5*(vs1+vs2)).minCoeff() * tol;
}
template <class HeaderType>
inline void squeeze_dim (HeaderType& in, size_t from_axis = 3)
{
size_t n = in.ndim();
while (in.size(n-1) <= 1 && n > from_axis) --n;
in.ndim() = n;
}
namespace Helper
{
template <class ImageType>
class Index { NOMEMALIGN
public:
FORCE_INLINE Index (ImageType& image, size_t axis) : image (image), axis (axis) { assert (axis < image.ndim()); }
Index () = delete;
Index (const Index&) = delete;
FORCE_INLINE Index (Index&&) = default;
FORCE_INLINE operator ssize_t () const { return get (); }
FORCE_INLINE ssize_t operator++ () { move( 1); return get(); }
FORCE_INLINE ssize_t operator-- () { move(-1); return get(); }
FORCE_INLINE ssize_t operator++ (int) { auto p = get(); move( 1); return p; }
FORCE_INLINE ssize_t operator-- (int) { auto p = get(); move(-1); return p; }
FORCE_INLINE ssize_t operator+= (ssize_t increment) { move( increment); return get(); }
FORCE_INLINE ssize_t operator-= (ssize_t increment) { move(-increment); return get(); }
FORCE_INLINE ssize_t operator= (ssize_t position) { return ( *this += position - get() ); }
FORCE_INLINE ssize_t operator= (Index&& position) { return ( *this = position.get() ); }
friend std::ostream& operator<< (std::ostream& stream, const Index& p) { stream << p.get(); return stream; }
protected:
ImageType& image;
const size_t axis;
FORCE_INLINE ssize_t get () const { return image.get_index (axis); }
FORCE_INLINE void move (ssize_t amount) { image.move_index (axis, amount); }
};
template <class ImageType>
class Value { NOMEMALIGN
public:
using value_type = typename ImageType::value_type;
Value () = delete;
Value (const Value&) = delete;
FORCE_INLINE Value (Value&&) = default;
FORCE_INLINE Value (ImageType& parent) : image (parent) { }
FORCE_INLINE operator value_type () const { return get(); }
FORCE_INLINE value_type operator= (value_type value) { return set (value); }
template <typename OtherType>
FORCE_INLINE value_type operator= (Value<OtherType>&& V) { return set (typename OtherType::value_type (V)); }
FORCE_INLINE value_type operator+= (value_type value) { return set (get() + value); }
FORCE_INLINE value_type operator-= (value_type value) { return set (get() - value); }
FORCE_INLINE value_type operator*= (value_type value) { return set (get() * value); }
FORCE_INLINE value_type operator/= (value_type value) { return set (get() / value); }
friend std::ostream& operator<< (std::ostream& stream, const Value& V) { stream << V.get(); return stream; }
private:
ImageType& image;
FORCE_INLINE value_type get () const { return image.get_value(); }
FORCE_INLINE value_type set (value_type value) { image.set_value (value); return value; }
};
template <class ImageType>
class ConstRow { NOMEMALIGN
public:
ConstRow (ImageType& image, size_t axis) : axis (axis), image (image) { assert (axis >= 0 && axis < image.ndim()); }
ssize_t size () const { return image.size (axis); }
typename ImageType::value_type operator[] (ssize_t n) const { image.index (axis) = n; return image.value(); }
const size_t axis;
protected:
ImageType& image;
template <typename, int, int, int, int, int> friend class Eigen::Matrix;
template <class Derived> friend class Eigen::MatrixBase;
template <class OtherImageType> friend class Row;
};
template <class ImageType>
class Row :
public ConstRow<ImageType>
{ NOMEMALIGN
public:
using value_type = typename ImageType::value_type;
Row (ImageType& image, size_t axis) : ConstRow<ImageType> (image, axis) { }
template <class OtherImageType>
Row (ConstRow<OtherImageType>&& other) {
assert (image.size(axis) == other.image.size(other.axis));
for (image.index(axis) = 0, other.image.index(other.axis);
image.index(axis) < image.size(axis);
++image.index(axis), ++other.image.index(other.axis))
image.value() = typename OtherImageType::value_type (other.image.value());
}
using ConstRow<ImageType>::image;
using ConstRow<ImageType>::axis;
#define MRTRIX_OP(ARG) \
template <class Derived> \
FORCE_INLINE void operator ARG (const Eigen::MatrixBase<Derived>& vec) { \
assert (vec.rows() == image.size(axis)); \
assert (vec.cols() == 1); \
for (image.index(axis) = 0; image.index(axis) < image.size(axis); ++image.index(axis)) \
image.value() ARG vec[image.index(axis)]; \
}
MRTRIX_OP(=);
MRTRIX_OP(+=);
MRTRIX_OP(-=);
#undef MRTRIX_OP
#define MRTRIX_OP(ARG) \
FORCE_INLINE void operator ARG (value_type val) { \
for (image.index(axis) = 0; image.index(axis) < image.size(axis); ++image.index(axis)) \
image.value() ARG val; \
}
MRTRIX_OP(=);
MRTRIX_OP(+=);
MRTRIX_OP(-=);
MRTRIX_OP(*=);
MRTRIX_OP(/=);
#undef MRTRIX_OP
FORCE_INLINE void operator= (Row&& other) {
assert (image.size(axis) == other.image.size(other.axis));
for (image.index(axis) = 0, other.image.index(other.axis) = 0;
image.index(axis) < image.size(axis);
++image.index(axis), ++other.image.index(other.axis))
image.value() = other.image.value();
}
#define MRTRIX_OP(ARG) \
template <class OtherImageType> \
FORCE_INLINE void operator ARG (ConstRow<OtherImageType>&& other) { \
assert (image.size(axis) == other.image.size(other.axis)); \
for (image.index(axis) = 0, other.image.index(other.axis) = 0; \
image.index(axis) < image.size(axis); \
++image.index(axis), ++other.image.index(other.axis)) \
image.value() ARG typename OtherImageType::value_type (other.image.value()); \
}
MRTRIX_OP(=);
MRTRIX_OP(+=);
MRTRIX_OP(-=);
#undef MRTRIX_OP
};
}
template <class Derived, typename ValueType>
class ImageBase
{ MEMALIGN (ImageBase<Derived,ValueType>)
public:
using value_type = ValueType;
FORCE_INLINE Helper::Index<Derived> index (size_t axis) { return { static_cast<Derived&> (*this), axis }; }
FORCE_INLINE ssize_t index (size_t axis) const { return static_cast<const Derived*>(this)->get_index (axis); }
FORCE_INLINE Helper::Value<Derived> value () { return { static_cast<Derived&> (*this) }; }
FORCE_INLINE ValueType value () const { return static_cast<const Derived*>(this)->get_value(); }
//! a proxy class for the vector of values along the specified axis
/*! returns a proxy class to simplify interactions with the data as a
* vector along the specified axis. This class can be cast to an Eigen
* matrix type, and can be assigned to using another instance of the
* same class, or using an Eigen type. For example:
* \code
* Image<float> in; // assuming size 3 along volume dimension
*
* in.row(3) = Eigen::Vector3f::Random(3,1);
* Eigen::Vector3f x (in.row(3));
* out.row(3) += x;
* out.row(3) += M*Eigen::Vector3f(in.row(3)) + Eigen::VectorXf (other.row(3));
* \code
* */
FORCE_INLINE Helper::ConstRow<Derived> row (size_t axis) const { return { static_cast<Derived&> (*this), axis }; }
FORCE_INLINE Helper::Row<Derived> row (size_t axis) { return { static_cast<Derived&> (*this), axis }; }
};
}
#endif
|