1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758
|
/* Copyright (c) 2008-2022 the MRtrix3 contributors.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* Covered Software is provided under this License on an "as is"
* basis, without warranty of any kind, either expressed, implied, or
* statutory, including, without limitation, warranties that the
* Covered Software is free of defects, merchantable, fit for a
* particular purpose or non-infringing.
* See the Mozilla Public License v. 2.0 for more details.
*
* For more details, see http://www.mrtrix.org/.
*/
#ifndef __math_SH_h__
#define __math_SH_h__
#include "math/legendre.h"
#include "math/least_squares.h"
#define MAX_DIR_CHANGE 0.2
#define ANGLE_TOLERANCE 1e-4
namespace MR
{
namespace Math
{
namespace SH
{
/** \defgroup spherical_harmonics Spherical Harmonics
* \brief Classes & functions to manage spherical harmonics. */
/** \addtogroup spherical_harmonics
* @{ */
//! a string containing a description of the SH storage convention
/*! This can used directly in the DESCRIPTION field of a command's
* usage() function. */
extern const char* encoding_description;
//! the number of (even-degree) coefficients for the given value of \a lmax
inline size_t NforL (int lmax)
{
return (lmax+1) * (lmax+2) /2;
}
//! compute the index for coefficient (l,m)
inline size_t index (int l, int m)
{
return l * (l+1) /2 + m;
}
//! same as NforL(), but consider only non-negative orders \e m
inline size_t NforL_mpos (int lmax)
{
return (lmax/2+1) * (lmax/2+1);
}
//! same as index(), but consider only non-negative orders \e m
inline size_t index_mpos (int l, int m)
{
return l*l/4 + m;
}
//! returns the largest \e lmax given \a N parameters
inline size_t LforN (int N)
{
return N ? 2 * std::floor<size_t> ( (std::sqrt (float (1+8*N))-3.0) /4.0) : 0;
}
//! form the SH->amplitudes matrix
/*! This computes the matrix \a SHT mapping spherical harmonic
* coefficients up to maximum harmonic degree \a lmax onto directions \a
* dirs (in spherical coordinates, with columns [ azimuth elevation ]). */
template <class MatrixType>
Eigen::Matrix<typename MatrixType::Scalar,Eigen::Dynamic, Eigen::Dynamic> init_transform (const MatrixType& dirs, const int lmax)
{
using namespace Eigen;
using value_type = typename MatrixType::Scalar;
if (dirs.cols() != 2)
throw Exception ("direction matrix should have 2 columns: [ azimuth elevation ]");
Matrix<value_type,Dynamic,Dynamic> SHT (dirs.rows(), NforL (lmax));
Matrix<value_type,Dynamic,1,0,64> AL (lmax+1);
for (ssize_t i = 0; i < dirs.rows(); i++) {
const value_type z = std::cos (dirs (i,1));
Legendre::Plm_sph (AL, lmax, 0, z);
for (int l = 0; l <= lmax; l+=2)
SHT (i,index (l,0)) = AL[l];
for (int m = 1; m <= lmax; m++) {
Legendre::Plm_sph (AL, lmax, m, z);
for (int l = ( (m&1) ? m+1 : m); l <= lmax; l+=2) {
SHT(i, index(l, m)) = Math::sqrt2 * AL[l]*std::cos (m*dirs (i,0));
SHT(i, index(l,-m)) = Math::sqrt2 * AL[l]*std::sin (m*dirs (i,0));
}
}
}
return SHT;
}
//! form the SH->amplitudes matrix
/*! This computes the matrix \a SHT mapping spherical harmonic
* coefficients up to maximum harmonic degree \a lmax onto directions \a
* dirs (in cartesian coordinates, with columns [ x y z ] ans normalised). */
template <class MatrixType>
Eigen::Matrix<typename MatrixType::Scalar,Eigen::Dynamic, Eigen::Dynamic> init_transform_cart (const MatrixType& dirs, const int lmax)
{
using namespace Eigen;
using value_type = typename MatrixType::Scalar;
if (dirs.cols() != 3)
throw Exception ("direction matrix should have 3 columns: [ x y z ]");
Matrix<value_type,Dynamic,Dynamic> SHT (dirs.rows(), NforL (lmax));
Matrix<value_type,Dynamic,1,0,64> AL (lmax+1);
for (ssize_t i = 0; i < dirs.rows(); i++) {
value_type z = dirs (i,2);
value_type rxy = std::hypot(dirs(i,0), dirs(i,1));
value_type cp = (rxy) ? dirs(i,0)/rxy : 1.0;
value_type sp = (rxy) ? dirs(i,1)/rxy : 0.0;
Legendre::Plm_sph (AL, lmax, 0, z);
for (int l = 0; l <= lmax; l+=2)
SHT (i,index (l,0)) = AL[l];
value_type c0 (1.0), s0 (0.0);
for (int m = 1; m <= lmax; m++) {
Legendre::Plm_sph (AL, lmax, m, z);
value_type c = c0 * cp - s0 * sp;
value_type s = s0 * cp + c0 * sp;
for (int l = ( (m&1) ? m+1 : m); l <= lmax; l+=2) {
SHT(i, index(l, m)) = Math::sqrt2 * AL[l] * c;
SHT(i, index(l,-m)) = Math::sqrt2 * AL[l] * s;
}
c0 = c;
s0 = s;
}
}
return SHT;
}
//! scale the coefficients of each SH degree by the corresponding value in \a coefs
template <class MatrixType, class VectorType>
inline void scale_degrees_forward (MatrixType& SH2amp_mapping, const VectorType& coefs)
{
ssize_t l = 0, nl = 1;
for (ssize_t col = 0; col < SH2amp_mapping.cols(); ++col) {
if (col >= nl) {
l++;
nl = NforL (2*l);
}
SH2amp_mapping.col(col) *= coefs[l];
}
}
//! scale the coefficients of each SH degree by the corresponding value in \a coefs
template <typename MatrixType, class VectorType>
inline void scale_degrees_inverse (MatrixType& amp2SH_mapping, const VectorType& coefs)
{
ssize_t l = 0, nl = 1;
for (ssize_t row = 0; row < amp2SH_mapping.rows(); ++row) {
if (row >= nl) {
l++;
nl = NforL (2*l);
}
amp2SH_mapping.row(row) *= coefs[l];
}
}
//! invert any non-zero coefficients in \a coefs
template <typename VectorType>
inline Eigen::Matrix<typename VectorType::Scalar,Eigen::Dynamic,1> invert (const VectorType& coefs)
{
Eigen::Matrix<typename VectorType::Scalar,Eigen::Dynamic,1> ret (coefs.size());
for (size_t n = 0; n < coefs.size(); ++n)
ret[n] = ( coefs[n] ? 1.0 / coefs[n] : 0.0 );
return ret;
}
template <typename ValueType>
class Transform { MEMALIGN(Transform<ValueType>)
public:
using matrix_type = Eigen::Matrix<ValueType,Eigen::Dynamic,Eigen::Dynamic>;
template <class MatrixType>
Transform (const MatrixType& dirs, int lmax) :
SHT (init_transform (dirs, lmax)),
iSHT (pinv (SHT)) { }
template <class VectorType>
void set_filter (const VectorType& filter) {
scale_degrees_forward (SHT, invert (filter));
scale_degrees_inverse (iSHT, filter);
}
template <class VectorType1, class VectorType2>
void A2SH (VectorType1& sh, const VectorType2& amplitudes) const {
sh.noalias() = iSHT * amplitudes;
}
template <class VectorType1, class VectorType2>
void SH2A (VectorType1& amplitudes, const VectorType2& sh) const {
amplitudes.noalias() = SHT * sh;
}
size_t n_SH () const {
return SHT.cols();
}
size_t n_amp () const {
return SHT.rows();
}
const matrix_type& mat_A2SH () const {
return iSHT;
}
const matrix_type& mat_SH2A () const {
return SHT;
}
protected:
matrix_type SHT, iSHT;
};
template <class VectorType>
inline typename VectorType::Scalar value (const VectorType& coefs,
typename VectorType::Scalar cos_elevation,
typename VectorType::Scalar cos_azimuth,
typename VectorType::Scalar sin_azimuth,
int lmax)
{
using value_type = typename VectorType::Scalar;
value_type amplitude = 0.0;
Eigen::Matrix<value_type,Eigen::Dynamic,1,0,64> AL (lmax+1);
Legendre::Plm_sph (AL, lmax, 0, cos_elevation);
for (int l = 0; l <= lmax; l+=2)
amplitude += AL[l] * coefs[index (l,0)];
value_type c0 (1.0), s0 (0.0);
for (int m = 1; m <= lmax; m++) {
Legendre::Plm_sph (AL, lmax, m, cos_elevation);
value_type c = c0 * cos_azimuth - s0 * sin_azimuth; // std::cos(m*azimuth)
value_type s = s0 * cos_azimuth + c0 * sin_azimuth; // std::sin(m*azimuth)
for (int l = ( (m&1) ? m+1 : m); l <= lmax; l+=2)
amplitude += AL[l] * Math::sqrt2 * (c * coefs[index (l,m)] + s * coefs[index (l,-m)]);
c0 = c;
s0 = s;
}
return amplitude;
}
template <class VectorType>
inline typename VectorType::Scalar value (const VectorType& coefs,
typename VectorType::Scalar cos_elevation,
typename VectorType::Scalar azimuth,
int lmax)
{
return value (coefs, cos_elevation, std::cos(azimuth), std::sin(azimuth), lmax);
}
template <class VectorType1, class VectorType2>
inline typename VectorType1::Scalar value (const VectorType1& coefs, const VectorType2& unit_dir, int lmax)
{
using value_type = typename VectorType1::Scalar;
value_type rxy = std::sqrt ( pow2(unit_dir[1]) + pow2(unit_dir[0]) );
value_type cp = (rxy) ? unit_dir[0]/rxy : 1.0;
value_type sp = (rxy) ? unit_dir[1]/rxy : 0.0;
return value (coefs, unit_dir[2], cp, sp, lmax);
}
template <class VectorType1, class VectorType2>
inline VectorType1& delta (VectorType1& delta_vec, const VectorType2& unit_dir, int lmax)
{
using value_type = typename VectorType1::Scalar;
delta_vec.resize (NforL (lmax));
value_type rxy = std::sqrt ( pow2(unit_dir[1]) + pow2(unit_dir[0]) );
value_type cp = (rxy) ? unit_dir[0]/rxy : 1.0;
value_type sp = (rxy) ? unit_dir[1]/rxy : 0.0;
Eigen::Matrix<value_type,Eigen::Dynamic,1,0,64> AL (lmax+1);
Legendre::Plm_sph (AL, lmax, 0, unit_dir[2]);
for (int l = 0; l <= lmax; l+=2)
delta_vec[index (l,0)] = AL[l];
value_type c0 (1.0), s0 (0.0);
for (int m = 1; m <= lmax; m++) {
Legendre::Plm_sph (AL, lmax, m, unit_dir[2]);
value_type c = c0 * cp - s0 * sp;
value_type s = s0 * cp + c0 * sp;
for (int l = ( (m&1) ? m+1 : m); l <= lmax; l+=2) {
delta_vec[index (l,m)] = AL[l] * Math::sqrt2 * c;
delta_vec[index (l,-m)] = AL[l] * Math::sqrt2 * s;
}
c0 = c;
s0 = s;
}
return delta_vec;
}
template <class VectorType1, class VectorType2>
inline VectorType1& SH2RH (VectorType1& RH, const VectorType2& sh)
{
using value_type = typename VectorType2::Scalar;
RH.resize (sh.size());
int lmax = 2*sh.size() +1;
Eigen::Matrix<value_type,Eigen::Dynamic,1,0,64> AL (lmax+1);
Legendre::Plm_sph (AL, lmax, 0, 1.0);
for (ssize_t l = 0; l < sh.size(); l++)
RH[l] = sh[l]/ AL[2*l];
return RH;
}
template <class VectorType>
inline Eigen::Matrix<typename VectorType::Scalar,Eigen::Dynamic,1> SH2RH (const VectorType& sh)
{
Eigen::Matrix<typename VectorType::Scalar,Eigen::Dynamic,1> RH (sh.size());
SH2RH (RH, sh);
return RH;
}
//! perform spherical convolution, in place
/*! perform spherical convolution of SH coefficients \a sh with response
* function \a RH, storing the results in place in vector \a sh. */
template <class VectorType1, class VectorType2>
inline VectorType1& sconv (VectorType1& sh, const VectorType2& RH)
{
assert (sh.size() >= ssize_t (NforL (2* (RH.size()-1))));
for (ssize_t i = 0; i < RH.size(); ++i) {
int l = 2*i;
for (int m = -l; m <= l; ++m)
sh[index (l,m)] *= RH[i];
}
return sh;
}
//! perform spherical convolution
/*! perform spherical convolution of SH coefficients \a sh with response
* function \a RH, storing the results in vector \a C. */
template <class VectorType1, class VectorType2, class VectorType3>
inline VectorType1& sconv (VectorType1& C, const VectorType2& RH, const VectorType3& sh)
{
assert (sh.size() >= ssize_t (NforL (2* (RH.size()-1))));
C.resize (NforL (2* (RH.size()-1)));
for (ssize_t i = 0; i < RH.size(); ++i) {
int l = 2*i;
for (int m = -l; m <= l; ++m)
C[index (l,m)] = RH[i] * sh[index (l,m)];
}
return C;
}
//! perform spherical convolution, in place
/*! perform spherical convolution of SH coefficients, stored in rows
* in matrix \a sh with response function \a RH, storing the results
* in place in matrix \a sh. */
template <class MatrixType1, class VectorType2>
inline MatrixType1& sconv_mat (MatrixType1& sh, const VectorType2& RH)
{
assert (sh.cols() >= ssize_t (NforL (2* (RH.size()-1))));
for (ssize_t i = 0; i < RH.size(); ++i) {
int l = 2*i;
for (int m = -l; m <= l; ++m)
sh.col(index (l,m)) *= RH[i];
}
return sh;
}
namespace {
template <typename> struct __dummy { NOMEMALIGN using type = int; };
}
//! used to speed up SH calculation
template <typename ValueType> class PrecomputedFraction
{ NOMEMALIGN
public:
PrecomputedFraction () : f1 (0.0), f2 (0.0) { }
ValueType f1, f2;
typename vector<ValueType>::const_iterator p1, p2;
};
//! Precomputed Associated Legrendre Polynomials - used to speed up SH calculation
template <typename ValueType> class PrecomputedAL
{ NOMEMALIGN
public:
using value_type = ValueType;
PrecomputedAL () : lmax (0), ndir (0), nAL (0), inc (0.0) { }
PrecomputedAL (int up_to_lmax, int num_dir = 512) {
init (up_to_lmax, num_dir);
}
bool operator! () const {
return AL.empty();
}
operator bool () const {
return AL.size();
}
void init (int up_to_lmax, int num_dir = 512) {
lmax = up_to_lmax;
ndir = num_dir;
nAL = NforL_mpos (lmax);
inc = Math::pi / (ndir-1);
AL.resize (ndir*nAL);
Eigen::Matrix<value_type,Eigen::Dynamic,1,0,64> buf (lmax+1);
for (int n = 0; n < ndir; n++) {
typename vector<value_type>::iterator p = AL.begin() + n*nAL;
value_type cos_el = std::cos (n*inc);
for (int m = 0; m <= lmax; m++) {
Legendre::Plm_sph (buf, lmax, m, cos_el);
for (int l = ( (m&1) ?m+1:m); l <= lmax; l+=2)
p[index_mpos (l,m)] = buf[l];
}
}
}
void set (PrecomputedFraction<ValueType>& f, const ValueType elevation) const {
f.f2 = elevation / inc;
int i = int (f.f2);
if (i < 0) {
i = 0;
f.f1 = 1.0;
f.f2 = 0.0;
}
else if (i >= ndir-1) {
i = ndir-1;
f.f1 = 1.0;
f.f2 = 0.0;
}
else {
f.f2 -= i;
f.f1 = 1.0 - f.f2;
}
f.p1 = AL.begin() + i*nAL;
f.p2 = f.p1 + nAL;
}
ValueType get (const PrecomputedFraction<ValueType>& f, int i) const {
ValueType v = f.f1*f.p1[i];
if (f.f2) v += f.f2*f.p2[i];
return v;
}
ValueType get (const PrecomputedFraction<ValueType>& f, int l, int m) const {
return get (f, index_mpos (l,m));
}
void get (ValueType* dest, const PrecomputedFraction<ValueType>& f) const {
for (int l = 0; l <= lmax; l+=2) {
for (int m = 0; m <= l; m++) {
int i = index_mpos (l,m);
dest[i] = get (f,i);
}
}
}
template <class VectorType, class UnitVectorType>
ValueType value (const VectorType& val, const UnitVectorType& unit_dir) const {
PrecomputedFraction<ValueType> f;
set (f, std::acos (unit_dir[2]));
ValueType rxy = std::sqrt ( pow2(unit_dir[1]) + pow2(unit_dir[0]) );
ValueType cp = (rxy) ? unit_dir[0]/rxy : 1.0;
ValueType sp = (rxy) ? unit_dir[1]/rxy : 0.0;
ValueType v = 0.0;
for (int l = 0; l <= lmax; l+=2)
v += get (f,l,0) * val[index (l,0)];
ValueType c0 (1.0), s0 (0.0);
for (int m = 1; m <= lmax; m++) {
ValueType c = c0 * cp - s0 * sp;
ValueType s = s0 * cp + c0 * sp;
for (int l = ( (m&1) ? m+1 : m); l <= lmax; l+=2)
v += get (f,l,m) * Math::sqrt2 * (c * val[index (l,m)] + s * val[index (l,-m)]);
c0 = c;
s0 = s;
}
return v;
}
protected:
int lmax, ndir, nAL;
ValueType inc;
vector<ValueType> AL;
};
//! estimate direction & amplitude of SH peak
/*! find a peak of an SH series using Gauss-Newton optimisation, modified
* to operate directly in spherical coordinates. The initial search
* direction is \a unit_init_dir. If \a precomputer is not nullptr, it
* will be used to speed up the calculations, at the cost of a minor
* reduction in accuracy. */
template <class VectorType, class UnitVectorType, class ValueType = float>
inline typename VectorType::Scalar get_peak (
const VectorType& sh,
int lmax,
UnitVectorType& unit_init_dir,
PrecomputedAL<typename VectorType::Scalar>* precomputer = nullptr)
{
using value_type = typename VectorType::Scalar;
assert (std::isfinite (unit_init_dir[0]));
for (int i = 0; i < 50; i++) {
value_type az = std::atan2 (unit_init_dir[1], unit_init_dir[0]);
value_type el = std::acos (unit_init_dir[2]);
value_type amplitude, dSH_del, dSH_daz, d2SH_del2, d2SH_deldaz, d2SH_daz2;
derivatives (sh, lmax, el, az, amplitude, dSH_del, dSH_daz, d2SH_del2, d2SH_deldaz, d2SH_daz2, precomputer);
value_type del = sqrt (dSH_del*dSH_del + dSH_daz*dSH_daz);
value_type daz = 0.0;
if (del != 0.0) {
daz = dSH_daz/del;
del = dSH_del/del;
}
value_type dSH_dt = daz*dSH_daz + del*dSH_del;
value_type d2SH_dt2 = daz*daz*d2SH_daz2 + 2.0*daz*del*d2SH_deldaz + del*del*d2SH_del2;
value_type dt = d2SH_dt2 ? (-dSH_dt / d2SH_dt2) : 0.0;
if (dt < 0.0) dt = -dt;
if (dt > MAX_DIR_CHANGE) dt = MAX_DIR_CHANGE;
del *= dt;
daz *= dt;
unit_init_dir[0] += del*std::cos (az) *std::cos (el) - daz*std::sin (az);
unit_init_dir[1] += del*std::sin (az) *std::cos (el) + daz*std::cos (az);
unit_init_dir[2] -= del*std::sin (el);
unit_init_dir.normalize();
if (dt < ANGLE_TOLERANCE)
return amplitude;
}
unit_init_dir = { NaN, NaN, NaN };
DEBUG ("failed to find SH peak!");
return NaN;
}
//! computes first and second order derivatives of SH series
/*! This is used primarily in the get_peak() function. */
template <class VectorType>
inline void derivatives (
const VectorType& sh,
const int lmax,
const typename VectorType::Scalar elevation,
const typename VectorType::Scalar azimuth,
typename VectorType::Scalar& amplitude,
typename VectorType::Scalar& dSH_del,
typename VectorType::Scalar& dSH_daz,
typename VectorType::Scalar& d2SH_del2,
typename VectorType::Scalar& d2SH_deldaz,
typename VectorType::Scalar& d2SH_daz2,
PrecomputedAL<typename VectorType::Scalar>* precomputer)
{
using value_type = typename VectorType::Scalar;
value_type sel = std::sin (elevation);
value_type cel = std::cos (elevation);
bool atpole = sel < 1e-4;
dSH_del = dSH_daz = d2SH_del2 = d2SH_deldaz = d2SH_daz2 = 0.0;
VLA_MAX (AL, value_type, NforL_mpos (lmax), 64);
if (precomputer) {
PrecomputedFraction<value_type> f;
precomputer->set (f, elevation);
precomputer->get (AL, f);
}
else {
Eigen::Matrix<value_type,Eigen::Dynamic,1,0,64> buf (lmax+1);
for (int m = 0; m <= lmax; m++) {
Legendre::Plm_sph (buf, lmax, m, cel);
for (int l = ( (m&1) ?m+1:m); l <= lmax; l+=2)
AL[index_mpos (l,m)] = buf[l];
}
}
amplitude = sh[0] * AL[0];
for (int l = 2; l <= (int) lmax; l+=2) {
const value_type& v (sh[index (l,0)]);
amplitude += v * AL[index_mpos (l,0)];
dSH_del += v * sqrt (value_type (l* (l+1))) * AL[index_mpos (l,1)];
d2SH_del2 += v * (sqrt (value_type (l* (l+1) * (l-1) * (l+2))) * AL[index_mpos (l,2)] - l* (l+1) * AL[index_mpos (l,0)]) /2.0;
}
for (int m = 1; m <= lmax; m++) {
value_type caz = Math::sqrt2 * std::cos (m*azimuth);
value_type saz = Math::sqrt2 * std::sin (m*azimuth);
for (int l = ( (m&1) ? m+1 : m); l <= lmax; l+=2) {
const value_type& vp (sh[index (l,m)]);
const value_type& vm (sh[index (l,-m)]);
amplitude += (vp*caz + vm*saz) * AL[index_mpos (l,m)];
value_type tmp = sqrt (value_type ( (l+m) * (l-m+1))) * AL[index_mpos (l,m-1)];
if (l > m) tmp -= sqrt (value_type ( (l-m) * (l+m+1))) * AL[index_mpos (l,m+1)];
tmp /= -2.0;
dSH_del += (vp*caz + vm*saz) * tmp;
value_type tmp2 = - ( (l+m) * (l-m+1) + (l-m) * (l+m+1)) * AL[index_mpos (l,m)];
if (m == 1) tmp2 -= sqrt (value_type ( (l+m) * (l-m+1) * (l+m-1) * (l-m+2))) * AL[index_mpos (l,1)];
else tmp2 += sqrt (value_type ( (l+m) * (l-m+1) * (l+m-1) * (l-m+2))) * AL[index_mpos (l,m-2)];
if (l > m+1) tmp2 += sqrt (value_type ( (l-m) * (l+m+1) * (l-m-1) * (l+m+2))) * AL[index_mpos (l,m+2)];
tmp2 /= 4.0;
d2SH_del2 += (vp*caz + vm*saz) * tmp2;
if (atpole) dSH_daz += (vm*caz - vp*saz) * tmp;
else {
d2SH_deldaz += m * (vm*caz - vp*saz) * tmp;
dSH_daz += m * (vm*caz - vp*saz) * AL[index_mpos (l,m)];
d2SH_daz2 -= (vp*caz + vm*saz) * m*m * AL[index_mpos (l,m)];
}
}
}
if (!atpole) {
dSH_daz /= sel;
d2SH_deldaz /= sel;
d2SH_daz2 /= sel*sel;
}
}
//! a class to hold the coefficients for an apodised point-spread function.
template <typename ValueType> class aPSF
{ MEMALIGN(aPSF<ValueType>)
public:
aPSF (const size_t lmax) :
lmax (lmax),
RH (lmax/2 + 1)
{
switch (lmax) {
case 2:
RH[0] = ValueType(1.00000000);
RH[1] = ValueType(0.41939279);
break;
case 4:
RH[0] = ValueType(1.00000000);
RH[1] = ValueType(0.63608543);
RH[2] = ValueType(0.18487087);
break;
case 6:
RH[0] = ValueType(1.00000000);
RH[1] = ValueType(0.75490341);
RH[2] = ValueType(0.37126442);
RH[3] = ValueType(0.09614699);
break;
case 8:
RH[0] = ValueType(1.00000000);
RH[1] = ValueType(0.82384816);
RH[2] = ValueType(0.51261696);
RH[3] = ValueType(0.22440563);
RH[4] = ValueType(0.05593079);
break;
case 10:
RH[0] = ValueType(1.00000000);
RH[1] = ValueType(0.86725945);
RH[2] = ValueType(0.61519436);
RH[3] = ValueType(0.34570667);
RH[4] = ValueType(0.14300355);
RH[5] = ValueType(0.03548062);
break;
case 12:
RH[0] = ValueType(1.00000000);
RH[1] = ValueType(0.89737759);
RH[2] = ValueType(0.69278503);
RH[3] = ValueType(0.45249879);
RH[4] = ValueType(0.24169922);
RH[5] = ValueType(0.09826171);
RH[6] = ValueType(0.02502481);
break;
case 14:
RH[0] = ValueType(1.00000000);
RH[1] = ValueType(0.91717853);
RH[2] = ValueType(0.74685644);
RH[3] = ValueType(0.53467773);
RH[4] = ValueType(0.33031863);
RH[5] = ValueType(0.17013825);
RH[6] = ValueType(0.06810155);
RH[7] = ValueType(0.01754930);
break;
case 16:
RH[0] = ValueType(1.00000000);
RH[1] = ValueType(0.93261196);
RH[2] = ValueType(0.79064858);
RH[3] = ValueType(0.60562880);
RH[4] = ValueType(0.41454703);
RH[5] = ValueType(0.24880754);
RH[6] = ValueType(0.12661242);
RH[7] = ValueType(0.05106681);
RH[8] = ValueType(0.01365433);
break;
default:
throw Exception ("No aPSF RH data for lmax " + str(lmax));
}
}
template <class VectorType, class UnitVectorType>
VectorType& operator() (VectorType& sh, const UnitVectorType& dir) const
{
sh.resize (RH.size());
delta (sh, dir, lmax);
return sconv (sh, RH);
}
inline const Eigen::Matrix<ValueType,Eigen::Dynamic,1>& RH_coefs() const { return RH; }
private:
const size_t lmax;
Eigen::Matrix<ValueType,Eigen::Dynamic,1> RH;
};
//! convenience function to check if an input image can contain SH coefficients
template <class ImageType>
void check (const ImageType& H) {
if (H.ndim() < 4)
throw Exception ("image \"" + H.name() + "\" does not contain SH coefficients - not 4D");
size_t l = LforN (H.size(3));
if (l%2 || NforL (l) != size_t (H.size(3)))
throw Exception ("image \"" + H.name() + "\" does not contain SH coefficients - unexpected number of coefficients");
}
/** @} */
}
}
}
#endif
|