File: ZSH.h

package info (click to toggle)
mrtrix3 3.0.4-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 13,712 kB
  • sloc: cpp: 129,776; python: 9,494; sh: 593; makefile: 234; xml: 47
file content (300 lines) | stat: -rw-r--r-- 10,188 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
/* Copyright (c) 2008-2022 the MRtrix3 contributors.
 *
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/.
 *
 * Covered Software is provided under this License on an "as is"
 * basis, without warranty of any kind, either expressed, implied, or
 * statutory, including, without limitation, warranties that the
 * Covered Software is free of defects, merchantable, fit for a
 * particular purpose or non-infringing.
 * See the Mozilla Public License v. 2.0 for more details.
 *
 * For more details, see http://www.mrtrix.org/.
 */

#ifndef __math_ZSH_h__
#define __math_ZSH_h__

#include <Eigen/Dense>

#include "math/legendre.h"
#include "math/least_squares.h"
#include "math/SH.h"

namespace MR
{
  namespace Math
  {
    namespace ZSH
    {

      /** \defgroup zonal_spherical_harmonics Zonal Spherical Harmonics
       * \brief Classes & functions to manage zonal spherical harmonics
       * (spherical harmonic functions containing only m=0 terms). */

      /** \addtogroup zonal_spherical_harmonics
       * @{ */


      //! the number of (even-degree) coefficients for the given value of \a lmax
      inline size_t NforL (int lmax)
      {
        return (1 + lmax/2);
      }

      //! compute the index for coefficient l
      inline size_t index (int l)
      {
        return (l/2);
      }

      //! returns the largest \e lmax given \a N parameters 
      inline size_t LforN (int N)
      {
        return (2 * (N-1));
      }



      //! form the ZSH->amplitudes matrix for a set of elevation angles
      /*! This computes the matrix \a ZSHT mapping zonal spherical harmonic
       * coefficients up to maximum harmonic degree \a lmax onto amplitudes on
       * a set of elevations stored in a vector */
      template <typename value_type, class VectorType>
      Eigen::Matrix<value_type, Eigen::Dynamic, Eigen::Dynamic> init_amp_transform (const VectorType& els, const size_t lmax)
      {
        Eigen::Matrix<value_type, Eigen::Dynamic, Eigen::Dynamic> ZSHT;
        ZSHT.resize (els.size(), ZSH::NforL (lmax));
        Eigen::Matrix<value_type, Eigen::Dynamic, 1, 0, 64> AL (lmax+1);
        for (size_t i = 0; i != size_t(els.size()); i++) {
          Legendre::Plm_sph (AL, lmax, 0, std::cos (els[i]));
          for (size_t l = 0; l <= lmax; l += 2)
            ZSHT (i,index(l)) = AL[l];
        }
        return ZSHT;
      }



      //! form the ZSH->derivatives matrix for a set of elevation angles
      /*! This computes the matrix \a ZSHT mapping zonal spherical harmonic
       * coefficients up to maximum harmonic degree \a lmax onto derivatives
       * with respect to elevation angle, for a set of elevations stored in
       * a vector */
      template <typename value_type, class VectorType>
      Eigen::Matrix<value_type, Eigen::Dynamic, Eigen::Dynamic> init_deriv_transform (const VectorType& els, const size_t lmax)
      {
        Eigen::Matrix<value_type, Eigen::Dynamic, Eigen::Dynamic> dZSHdelT;
        dZSHdelT.resize (els.size(), ZSH::NforL (lmax));
        Eigen::Matrix<value_type, Eigen::Dynamic, 1, 0, 64> AL (lmax+1);
        for (size_t i = 0; i != size_t(els.size()); i++) {
          Legendre::Plm_sph (AL, lmax, 1, std::cos (els[i]));
          dZSHdelT (i,index(0)) = 0.0;
          for (size_t l = 2; l <= lmax; l += 2)
            dZSHdelT (i,index(l)) = AL[l] * sqrt (value_type (l*(l+1)));
        }
        return dZSHdelT;
      }




      template <typename ValueType>
      class Transform { MEMALIGN (Transform<ValueType>)
        public:
          using matrix_type = Eigen::Matrix<ValueType, Eigen::Dynamic, Eigen::Dynamic>;

          template <class MatrixType>
          Transform (const MatrixType& dirs, const size_t lmax) :
              ZSHT (init_amp_transform (dirs.col(1), lmax)), // Elevation angles are second column of aximuth/elevation matrix
              iZSHT (pinv (ZSHT)) { }

          template <class VectorType1, class VectorType2>
          void A2ZSH (VectorType1& zsh, const VectorType2& amplitudes) const {
            zsh.noalias() = iZSHT * amplitudes;
          }
          template <class VectorType1, class VectorType2>
          void ZSH2A (VectorType1& amplitudes, const VectorType2& zsh) const {
            amplitudes.noalias() = ZSHT * zsh;
          }

          size_t n_ZSH () const {
            return ZSHT.cols();
          }
          size_t n_amp () const  {
            return ZSHT.rows();
          }

          const matrix_type& mat_A2ZSH () const {
            return iZSHT;
          }
          const matrix_type& mat_ZSH2A () const {
            return ZSHT;
          }

        protected:
          matrix_type ZSHT, iZSHT;
      };



      template <class VectorType>
      inline typename VectorType::Scalar value (
          const VectorType& coefs,
          typename VectorType::Scalar elevation,
          const size_t lmax)
      {
        using value_type = typename VectorType::Scalar;
        Eigen::Matrix<value_type, Eigen::Dynamic, 1, 0, 64> AL (lmax+1);
        Legendre::Plm_sph (AL, lmax, 0, std::cos(elevation));
        value_type amplitude = 0.0;
        for (size_t l = 0; l <= lmax; l += 2)
          amplitude += AL[l] * coefs[index(l)];
        return amplitude;
      }



      template <class VectorType>
      inline typename VectorType::Scalar derivative (
          const VectorType& coefs,
          const typename VectorType::Scalar elevation,
          const size_t lmax)
      {
        using value_type = typename VectorType::Scalar;
        Eigen::Matrix<value_type, Eigen::Dynamic, 1, 0, 64> AL (lmax+1);
        Legendre::Plm_sph (AL, lmax, 1, std::cos (elevation));
        value_type dZSH_del = 0.0;
        for (size_t l = 2; l <= lmax; l += 2)
          dZSH_del += AL[l] * coefs[index(l)] * sqrt (value_type (l*(l+1)));
        return dZSH_del;
      }



      template <class VectorType1, class VectorType2>
      inline VectorType1& ZSH2SH (VectorType1& sh, const VectorType2& zsh)
      {
        const size_t lmax = LforN (zsh.size());
        sh.resize (Math::SH::NforL (lmax));
        for (size_t i = 0; i != size_t(sh.size()); ++i)
          sh[i] = 0.0;
        for (size_t l = 0; l <= lmax; l+=2)
          sh[Math::SH::index(l,0)] = zsh[index(l)];
        return sh;
      }

      template <class VectorType>
      inline Eigen::Matrix<typename VectorType::Scalar, Eigen::Dynamic, 1> ZSH2SH (const VectorType& zsh)
      {
        Eigen::Matrix<typename VectorType::Scalar, Eigen::Dynamic, 1> sh;
        ZSH2SH (sh, zsh);
        return sh;
      }




      template <class VectorType1, class VectorType2>
      inline VectorType1& SH2ZSH (VectorType1& zsh, const VectorType2& sh)
      {
        const size_t lmax = Math::SH::LforN (sh.size());
        zsh.resize (NforL (lmax));
        for (size_t l = 0; l <= lmax; l+=2)
          zsh[index(l)] = sh[Math::SH::index(l,0)];
        return zsh;
      }

      template <class VectorType>
      inline Eigen::Matrix<typename VectorType::Scalar, Eigen::Dynamic, 1> SH2ZSH (const VectorType& sh)
      {
        Eigen::Matrix<typename VectorType::Scalar, Eigen::Dynamic, 1> zsh;
        SH2ZSH (zsh, sh);
        return zsh;
      }



      template <class VectorType1, class VectorType2>
      inline VectorType1& ZSH2RH (VectorType1& rh, const VectorType2& zsh)
      {
        using value_type = typename VectorType2::Scalar;
        rh.resize (zsh.size());
        const size_t lmax = LforN (zsh.size());
        Eigen::Matrix<value_type,Eigen::Dynamic,1,0,64> AL (lmax+1);
        Legendre::Plm_sph (AL, lmax, 0, 1.0);
        for (size_t l = 0; l <= lmax; l += 2)
          rh[index(l)] = zsh[index(l)] / AL[l];
        return rh;
      }

      template <class VectorType>
      inline Eigen::Matrix<typename VectorType::Scalar,Eigen::Dynamic,1> ZSH2RH (const VectorType& zsh)
      {
        Eigen::Matrix<typename VectorType::Scalar,Eigen::Dynamic,1> rh (zsh.size());
        ZSH2RH (rh, zsh);
        return rh;
      }



      //! perform zonal spherical convolution, in place
      /*! perform zonal spherical convolution of ZSH coefficients \a zsh with response
       * function \a RH, storing the results in place in vector \a zsh. */
      template <class VectorType1, class VectorType2>
      inline VectorType1& zsconv (VectorType1& zsh, const VectorType2& RH)
      {
        assert (zsh.size() >= RH.size());
        for (size_t i = 0; i != size_t(RH.size()); ++i)
          zsh[i] *= RH[i];
        return zsh;
      }


      //! perform zonal spherical convolution
      /*! perform zonal spherical convolution of SH coefficients \a sh with response
       * function \a RH, storing the results in vector \a C. */
      template <class VectorType1, class VectorType2, class VectorType3>
      inline VectorType1& zsconv (VectorType1& C, const VectorType2& RH, const VectorType3& zsh)
      {
        assert (zsh.size() >= RH.size());
        C.resize (RH.size());
        for (size_t i = 0; i != size_t(RH.size()); ++i)
          C[i] = zsh[i] * RH[i];
        return C;
      }




      //! compute ZSH coefficients corresponding to specified tensor
      template <class VectorType>
      inline VectorType& FA2ZSH (VectorType& zsh, default_type FA, default_type ADC, default_type bvalue, const size_t lmax, const size_t precision = 100)
      {
        default_type a = FA/sqrt (3.0 - 2.0*FA*FA);
        default_type ev1 = ADC* (1.0+2.0*a), ev2 = ADC* (1.0-a);

        Eigen::VectorXd sigs (precision);
        Eigen::MatrixXd ZSHT (precision, lmax/2+1);
        Eigen::Matrix<default_type,Eigen::Dynamic,1,0,64> AL;

        for (size_t i = 0; i < precision; i++) {
          default_type el = i*Math::pi / (2.0*(precision-1));
          sigs[i] = exp (-bvalue * (ev1*std::cos (el)*std::cos (el) + ev2*std::sin (el)*std::sin (el)));
          Legendre::Plm_sph (AL, lmax, 0, std::cos (el));
          for (size_t l = 0; l <= lmax; l+=2)
            ZSHT (i,index(l)) = AL[l];
        }

        return (zsh = pinv(ZSHT) * sigs);
      }



    }
  }
}

#endif