1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
|
/* Copyright (c) 2008-2022 the MRtrix3 contributors.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* Covered Software is provided under this License on an "as is"
* basis, without warranty of any kind, either expressed, implied, or
* statutory, including, without limitation, warranties that the
* Covered Software is free of defects, merchantable, fit for a
* particular purpose or non-infringing.
* See the Mozilla Public License v. 2.0 for more details.
*
* For more details, see http://www.mrtrix.org/.
*/
#include "math/average_space.h"
namespace MR
{
namespace Math
{
double matrix_average (vector<Eigen::MatrixXd> const &mat_in, Eigen::MatrixXd& mat_avg, bool verbose) {
const size_t rows = mat_in[0].rows();
const size_t cols = mat_in[0].cols();
const size_t N = mat_in.size();
assert(rows);
assert(cols);
// check input
for (const auto &mat: mat_in) {
if (cols != (size_t) mat.cols() or rows != (size_t) mat.rows())
throw Exception("matrix average cannot be computed for matrices of different size");
}
mat_avg.resize(rows, cols);
mat_avg.setIdentity();
Eigen::MatrixXd mat_s (rows, cols); // sum
Eigen::MatrixXd mat_l (rows, cols);
for (size_t i = 0; i < 10000; ++i) {
mat_s.setZero(rows,cols);
Eigen::ColPivHouseholderQR<Eigen::MatrixXd> dec (mat_avg);
for (size_t j = 0; j < N; ++j) {
mat_l = dec.solve (mat_in[j]); // solve mat_avg * mat_l = mat_in[j] for mat_l
// std::cout << "mat_avg*mat_l - mat_in[j]:\n" << mat_avg*mat_l - mat_in[j] <<std::endl;
mat_s += mat_l.log().real();
}
mat_s *= 1./N;
mat_avg *= mat_s.exp();
if (verbose) std::cerr << i << " mat_s.squaredNorm(): " << mat_s.squaredNorm() << std::endl;
if (mat_s.squaredNorm() < 1E-20) {
break;
}
}
return mat_s.squaredNorm();
}
}
}
namespace MR
{
FORCE_INLINE Eigen::Matrix<default_type, 8, 4> get_cuboid_corners (const Eigen::Matrix<default_type, 4, 1>& xyz1) {
Eigen::Matrix<default_type, 8, 4> corners;
// MatrixType faces = MatrixType(8,4);
// faces << 1, 2, 3, 4, 2, 6, 7, 3, 4, 3, 7, 8, 1, 5, 8, 4, 1, 2, 6, 5, 5, 6, 7, 8;
corners << 0.0, 0.0, 0.0, 1.0,
0.0, 1.0, 0.0, 1.0,
1.0, 1.0, 0.0, 1.0,
1.0, 0.0, 0.0, 1.0,
0.0, 0.0, 1.0, 1.0,
0.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0,
1.0, 0.0, 1.0, 1.0;
corners *= xyz1.asDiagonal();
return corners;
}
FORCE_INLINE Eigen::Matrix<default_type, 8, 4> get_bounding_box (const Header& header, const Eigen::Transform<default_type, 3, Eigen::Projective>& voxel2scanner) {
assert (header.ndim() >= 3 && "get_bounding_box: image dimension has to be >= 3");
// width in voxels
Eigen::Matrix<default_type, 4, 1> width = Eigen::Matrix<default_type, 4, 1>::Ones(4);
for (size_t i = 0; i < 3; i++)
width[i] = header.size(i) - 1.0;
// image boundary box corners in scanner space
Eigen::Matrix<default_type, 8, 4> corners = get_cuboid_corners (width);
for (int i = 0; i < corners.rows(); i++)
corners.transpose().col(i) = voxel2scanner * corners.transpose().col(i);
return corners;
}
// Eigen::PermutationMatrix<Eigen::Dynamic,Eigen::Dynamic> iterative_closest_point_match (
// const Eigen::MatrixXd &target_vertices, const Eigen::MatrixXd &moving_vertices) {
// assert(target_vertices.rows() == moving_vertices.rows());
// const int n = moving_vertices.rows();
// assert (n > 1 && "more than one vertex required");
// assert(target_vertices.cols() == moving_vertices.cols());
// Eigen::PermutationMatrix<Eigen::Dynamic,Eigen::Dynamic> perm(n);
// perm.setIdentity();
// for (int trow = 0; trow < n; trow++) {
// double sqnorm = std::numeric_limits<double>::max();
// int *idx = perm.indices().size() + perm.indices().data() + 1;
// for (auto mrow = perm.indices().data()+trow ; mrow < perm.indices().data() + perm.indices().size(); mrow++) {
// double sn = (target_vertices.row(trow) - moving_vertices.row(*mrow)).squaredNorm();
// if (sn < sqnorm) {
// sqnorm = sn;
// idx = mrow;
// }
// }
// assert (idx <= perm.indices().size() + perm.indices().data());
// std::iter_swap (perm.indices().data() + trow, idx);
// }
// return perm;
// // A_perm = A * perm; // permute columns
// // A_perm = perm * A; // permute rows
// }
Eigen::Quaterniond rot_match_coordinates (const Eigen::MatrixXd &target_vertices, const Eigen::MatrixXd &moving_vertices) {
// rotate moving_vertices to minimise distance between closest vertices between target_vertices and moving_vertices
const int nt = target_vertices.rows();
const int nm = moving_vertices.rows();
assert (nm > 1 && "more than one vertex required");
assert(target_vertices.cols() == moving_vertices.cols());
assert(target_vertices.cols() == 3 && "3D");
double sqnorm = std::numeric_limits<double>::max();
int tidx = 0, midx = 0;
for (int mrow = 0; mrow < nm; mrow++) {
for (int trow = 0; trow < nt; trow++) {
double sn = (target_vertices.row(trow) - moving_vertices.row(mrow)).squaredNorm();
if (sn < sqnorm) {
sqnorm = sn;
tidx = trow;
midx = mrow;
}
}
break;
}
Eigen::Vector3d tvec = target_vertices.row(tidx).transpose();
Eigen::Vector3d mvec = moving_vertices.row(midx).transpose();
// quat1: rotate line of direction of moving_vertices to the line of target_vertices
Eigen::Quaterniond quat1 = Eigen::Quaterniond().setFromTwoVectors(mvec, tvec);
const Eigen::Matrix3d R (quat1);
midx = midx + 1 % nm;
const Eigen::Vector3d mvec_rot = moving_vertices.row(midx) * R.transpose();
sqnorm = std::numeric_limits<double>::max();
for (int trow = 0; trow < nt; trow++) {
if (trow == tidx)
continue;
double sn = (target_vertices.row(trow) - mvec_rot.transpose()).squaredNorm();
if (sn < sqnorm) {
sqnorm = sn;
tidx = trow;
}
}
auto quat2 = Eigen::Quaterniond::FromTwoVectors ( mvec_rot.transpose(), target_vertices.row(tidx).transpose());
Eigen::Quaterniond res (quat2 * quat1);
return res;
}
void compute_average_voxel2scanner (Eigen::Transform<default_type, 3, Eigen::Projective>& average_v2s_trafo,
Eigen::Vector3d& average_space_extent,
Eigen::Vector3d& projected_voxel_sizes,
const vector<Header>& input_headers,
const Eigen::Matrix<default_type, 4, 1>& padding,
const vector<Eigen::Transform<default_type, 3, Eigen::Projective>>& transform_header_with,
int voxel_subsampling) {
const size_t num_images = input_headers.size();
DEBUG ("compute_average_voxel2scanner num_images:" + str(num_images));
vector<Eigen::Transform<default_type, 3, Eigen::Projective>> transformation_matrices;
Eigen::MatrixXd bounding_box_corners = Eigen::MatrixXd::Zero (8 * num_images, 4);
for (size_t iFile = 0; iFile < num_images; iFile++) {
Eigen::Transform< default_type, 3, Eigen::Projective> v2s_trafo = (Eigen::Transform< default_type, 3, Eigen::Projective>) Transform(input_headers[iFile]).voxel2scanner;
if (transform_header_with.size()) {
assert (transform_header_with.size() == input_headers.size());
if (transform_header_with[iFile].matrix().hasNaN()) {
throw Exception ("compute_average_voxel2scanner: transformation to image header of image " + str(iFile) + " contains NaN");
}
v2s_trafo = transform_header_with[iFile] * v2s_trafo;
}
transformation_matrices.push_back(v2s_trafo);
bounding_box_corners.template block<8,4>(iFile*8,0) = get_bounding_box (input_headers[iFile], v2s_trafo);
// voxel_diagonals.col(iFile) = v2s_trafo * voxel_diagonals.col(iFile);
}
// Get average rotation of coordinate system
// rotation is smallest rotation possible to rotate image towards scanner coordinate system grid
// to factor out large rotations. For this, the matrix Frechet mean (average_matrix) is not suitable.
// average quaternion calculation from http://www.acsu.buffalo.edu/~johnc/ave_quat07.pdf
Eigen::MatrixXd ScannerSpaceAxis3 = Eigen::MatrixXd::Identity(3,3);
Eigen::Matrix<default_type, 6, 3> ScannerSpaceAxis6;
ScannerSpaceAxis6.block<3,3>(0,0) = ScannerSpaceAxis3;
ScannerSpaceAxis6.block<3,3>(3,0) = -ScannerSpaceAxis3;
Eigen::MatrixXd quaternions = Eigen::MatrixXd(4, num_images);
for (size_t itrafo = 0; itrafo < num_images; itrafo++) {
Eigen::MatrixXd Other = ScannerSpaceAxis3 * transformation_matrices[itrafo].rotation().transpose();
Eigen::Quaterniond quat = rot_match_coordinates (ScannerSpaceAxis6, Other);
quaternions.col(itrafo) = quat.coeffs(); // internally the coefficients are stored in the following order: [x, y, z, w]
}
Eigen::SelfAdjointEigenSolver<Eigen::MatrixXd> es (quaternions * quaternions.transpose(), Eigen::ComputeEigenvectors);
Eigen::Quaterniond average_quat;
average_quat.coeffs() = es.eigenvectors().col(3).transpose();
average_quat.normalize();
const Eigen::Matrix3d Raverage (average_quat.toRotationMatrix());
Eigen::MatrixXd rot_vox_size = Eigen::MatrixXd (3, num_images);
for (size_t itrafo = 0; itrafo < num_images; itrafo++) {
Eigen::MatrixXd M = (Raverage * transformation_matrices[itrafo].linear()).cwiseAbs();
if (voxel_subsampling == 0)
rot_vox_size.col(itrafo) = (Raverage * transformation_matrices[itrafo].linear()).cwiseAbs().diagonal();
else
rot_vox_size.col(itrafo) = (Raverage * transformation_matrices[itrafo].linear()).cwiseAbs().colwise().sum();
}
switch (voxel_subsampling) {
case 0: // maximum voxel size determined by minimum of all projected input image voxel sizes, sampling at or above Nyquist limit
projected_voxel_sizes = rot_vox_size.rowwise().minCoeff();
break;
case 1: // maximum voxel size determined by mean of all projected input image voxel sizes
projected_voxel_sizes = rot_vox_size.rowwise().mean();
break;
default:
assert( 0 && "compute_average_voxel2scanner: invalid voxel_subsampling option");
break;
}
Eigen::MatrixXd mat_avg = Eigen::MatrixXd::Zero (4, 4);
mat_avg.block<3,3>(0,0) = Raverage.transpose();
mat_avg.col(0) *= projected_voxel_sizes(0);
mat_avg.col(1) *= projected_voxel_sizes(1);
mat_avg.col(2) *= projected_voxel_sizes(2);
mat_avg(3,3) = 1;
average_v2s_trafo.matrix() = mat_avg; // average_v2s_trafo has zero translation
Eigen::Transform<default_type, 3, Eigen::Projective> average_s2v_trafo = average_v2s_trafo.inverse (Eigen::Projective);
// set extent in voxels and translation of average_v2s_trafo
{
// transform all image corners into inverse average space
Eigen::MatrixXd bounding_box_corners_inv = bounding_box_corners * average_s2v_trafo.matrix().transpose();
Eigen::VectorXd bounding_box_corners_inv_min = bounding_box_corners_inv.colwise().minCoeff();
Eigen::VectorXd bounding_box_corners_inv_max = bounding_box_corners_inv.colwise().maxCoeff();
Eigen::VectorXd bounding_box_corners_inv_extent = (bounding_box_corners_inv_max - bounding_box_corners_inv_min).cwiseAbs();
bounding_box_corners_inv_extent += 2.0 * padding;
bounding_box_corners_inv_extent(3) = 1.0;
average_space_extent = bounding_box_corners_inv_extent.head<3>();
average_space_extent(0) = std::round(average_space_extent(0)) + 1;
average_space_extent(1) = std::round(average_space_extent(1)) + 1;
average_space_extent(2) = std::round(average_space_extent(2)) + 1;
Eigen::Vector3d c000 = average_v2s_trafo.linear() * (bounding_box_corners_inv_min - padding).head<3>(); // voxel space min corner
average_v2s_trafo.matrix().col(3).template head<3>() = c000.template head<3>();
}
}
Header compute_minimum_average_header (const vector<Header>& input_headers,
const vector<Eigen::Transform<default_type, 3, Eigen::Projective>>& transform_header_with,
int voxel_subsampling,
Eigen::Matrix<default_type, 4, 1> padding) {
Eigen::Transform<default_type, 3, Eigen::Projective> average_v2s_trafo;
Eigen::Vector3d average_space_voxel_extent;
Eigen::Vector3d projected_voxel_sizes;
compute_average_voxel2scanner (average_v2s_trafo, average_space_voxel_extent, projected_voxel_sizes, input_headers, padding, transform_header_with, voxel_subsampling);
// create average space header
Header header_out;
header_out.ndim() = 3;
for (size_t i = 0; i < 3; i++)
header_out.spacing(i) = projected_voxel_sizes(i);
DEBUG("compute_minimum_average_header header_out.spacing: "+str(header_out.spacing(0))+", "+str(header_out.spacing(1))+", "+str(header_out.spacing(2)));
header_out.transform().linear() = average_v2s_trafo.rotation();
header_out.transform().translation() = average_v2s_trafo.translation();
for (size_t i = 0; i < 3; i++) {
header_out.size(i) = std::ceil (average_space_voxel_extent(i));
if (header_out.size(i) < 1)
throw Exception ("average space header has zero voxels in dimension " + str(i) + ". Increase resolution?");
}
DEBUG("compute_minimum_average_header header_out.size: "+str(header_out.size(0))+", "+str(header_out.size(1))+", "+str(header_out.size(2)));
return header_out;
}
}
|