File: average_space.h

package info (click to toggle)
mrtrix3 3.0.4-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 13,712 kB
  • sloc: cpp: 129,776; python: 9,494; sh: 593; makefile: 234; xml: 47
file content (58 lines) | stat: -rw-r--r-- 2,607 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
/* Copyright (c) 2008-2022 the MRtrix3 contributors.
 *
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/.
 *
 * Covered Software is provided under this License on an "as is"
 * basis, without warranty of any kind, either expressed, implied, or
 * statutory, including, without limitation, warranties that the
 * Covered Software is free of defects, merchantable, fit for a
 * particular purpose or non-infringing.
 * See the Mozilla Public License v. 2.0 for more details.
 *
 * For more details, see http://www.mrtrix.org/.
 */

#ifndef __math_average_space_h__
#define __math_average_space_h__

#include <unsupported/Eigen/MatrixFunctions>
#include <Eigen/SVD>
#include <Eigen/Geometry>
#include "transform.h"
#include "image.h"
#include "debug.h"

namespace MR
{
   namespace Math
   {
      double matrix_average (vector<Eigen::MatrixXd> const &mat_in, Eigen::MatrixXd& mat_avg, bool verbose = false);
   }
 }

 namespace MR {

  Eigen::Matrix<default_type, 8, 4> get_cuboid_corners (const Eigen::Matrix<default_type, 4, 1>& xzx1);
  Eigen::Matrix<default_type, 8, 4> get_bounding_box (const Header& header, const Eigen::Transform<default_type, 3, Eigen::Projective>& voxel2scanner);

  Header compute_minimum_average_header (const vector<Header>& input_headers,
                                         const vector<Eigen::Transform<default_type, 3, Eigen::Projective>>& transform_header_with,
                                         int voxel_subsampling = 1,
                                         Eigen::Matrix<default_type, 4, 1> padding = Eigen::Matrix<default_type, 4, 1>(1.0, 1.0, 1.0, 1.0));

  template<class ImageType1, class ImageType2>
    Header compute_minimum_average_header (
        const ImageType1& im1,
        const ImageType2& im2,
        Eigen::Transform<default_type, 3, Eigen::Projective> transform_1 = Eigen::Transform<default_type, 3, Eigen::Projective>::Identity(),
        Eigen::Transform<default_type, 3, Eigen::Projective> transform_2 = Eigen::Transform<default_type, 3, Eigen::Projective>::Identity(),
        Eigen::Matrix<default_type, 4, 1> padding = Eigen::Matrix<default_type, 4, 1>(1.0, 1.0, 1.0, 1.0),
        int voxel_subsampling = 1) {
      vector<Eigen::Transform<default_type, 3, Eigen::Projective>> init_transforms {transform_1, transform_2};
      vector<Header> headers {im1,im2};
      return compute_minimum_average_header (headers, init_transforms, voxel_subsampling, padding);
    }
 }
#endif