1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
|
/* Copyright (c) 2008-2022 the MRtrix3 contributors.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* Covered Software is provided under this License on an "as is"
* basis, without warranty of any kind, either expressed, implied, or
* statutory, including, without limitation, warranties that the
* Covered Software is free of defects, merchantable, fit for a
* particular purpose or non-infringing.
* See the Mozilla Public License v. 2.0 for more details.
*
* For more details, see http://www.mrtrix.org/.
*/
#include "math/betainc.h"
namespace MR
{
namespace Math
{
/*
* zlib License
*
* Regularized Incomplete Beta Function
*
* Copyright (c) 2016, 2017 Lewis Van Winkle
* http://CodePlea.com
*
* This software is provided 'as-is', without any express or implied
* warranty. In no event will the authors be held liable for any damages
* arising from the use of this software.
*
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
*
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgement in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*/
// The original code from the source above has been modified in the
// following (inconsequential) ways:
// - Changed function and constants names
// - Changed double to default_type
// - Changed formatting to match MRtrix3 convention
#define BETAINCREG_STOP 1.0e-8
#define BETAINCREG_TINY 1.0e-30
default_type betaincreg (const default_type a, const default_type b, const default_type x)
{
if (x < 0.0 || x > 1.0)
return NaN;
// The continued fraction converges nicely for x < (a+1)/(a+b+2)
if (x > (a+1.0)/(a+b+2.0)) {
return (1.0 - betaincreg (b, a, 1.0-x)); // Use the fact that beta is symmetrical
}
// Find the first part before the continued fraction
const default_type lbeta_ab = std::lgamma (a) + std::lgamma (b) - std::lgamma (a+b);
const default_type front = std::exp (std::log(x)*a + std::log(1.0-x)*b - lbeta_ab) / a;
// Use Lentz's algorithm to evaluate the continued fraction
default_type f = 1.0, c = 1.0, d = 0.0;
for (size_t i = 0; i <= 200; ++i) {
const size_t m = i/2;
default_type numerator;
if (!i) {
numerator = 1.0; // First numerator is 1.0
} else if (i % 2) {
numerator = -((a+m) * (a+b+m) * x) / ((a + 2.0*m) * (a + 2.0*m + 1)); // Odd term
} else {
numerator = (m * (b-m) * x) / ((a + 2.0*m - 1.0) * (a + 2.0*m)); // Even term
}
// Do an iteration of Lentz's algorithm
d = 1.0 + numerator * d;
if (abs (d) < BETAINCREG_TINY)
d = BETAINCREG_TINY;
d = 1.0 / d;
c = 1.0 + numerator / c;
if (abs (c) < BETAINCREG_TINY)
c = BETAINCREG_TINY;
const default_type cd = c*d;
f *= cd;
// Check for stop
if (abs (1.0 - cd) < BETAINCREG_STOP)
return front * (f-1.0);
}
return NaN; // Needed more loops, did not converge
}
}
}
|