1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
|
/* Copyright (c) 2008-2022 the MRtrix3 contributors.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* Covered Software is provided under this License on an "as is"
* basis, without warranty of any kind, either expressed, implied, or
* statutory, including, without limitation, warranties that the
* Covered Software is free of defects, merchantable, fit for a
* particular purpose or non-infringing.
* See the Mozilla Public License v. 2.0 for more details.
*
* For more details, see http://www.mrtrix.org/.
*/
#ifndef __math_constrained_least_squares_h__
#define __math_constrained_least_squares_h__
#include <set>
#include "math/math.h"
#include <Eigen/Cholesky>
//#define DEBUG_ICLS
namespace MR
{
namespace Math
{
/** @addtogroup linalg
@{ */
/** @defgroup icls Inequality-constrained Least-squares
@{ */
//! functionality for solving constrained least-squares problems
/*! the problem is to solve norm(\e Hx - \e b) subject to \e Ax >=
* t and optionally \e Bx = s. This sets up a class to be re-used and
* shared across threads, assuming the matrices \e H, \e A & \e B and
* vectors \e t & \e s don't change, but the vector \e b does.
*
* The arguments passed to the Problem constructor correspond to:
* - \e H - \a problem_matrix
* - \e A - \a inequality_constraint_matrix
* - \e B - \a equality_constraint_matrix
* - \e b - \a problem_vector
* - \e t - \a inequality_constraint_vector
* - \e s - \a equality_constraint_vector
*
* It is also possible to apply an additional minimum norm constraint that
* will be added to the problem cost function, to stablise ill-posed
* problems, and/or a separate minimum norm constraint on the Lagrangian
* multipliers to handle cases where they become degenerate (otherwise
* leads to errors in the Cholesky decomposition). Both default to zero,
* set one or both of them to a small value such as 1e-10 to help with
* these kinds of problem.
* It is also possible to pass the problem already in standard form,
* whereby the matrix provided as \a problem_matrix is assumed to contain
* \e H<sup>T</sup>H (only its lower triangular part is taken into
* account), while the vectors provided to the solver will be assumed to
* contain \e H<sup>T</sup>b.
*/
namespace ICLS {
template <typename ValueType>
class Problem { MEMALIGN(Problem<ValueType>)
public:
using value_type = ValueType;
using matrix_type = Eigen::Matrix<value_type,Eigen::Dynamic,Eigen::Dynamic>;
using vector_type = Eigen::Matrix<value_type,Eigen::Dynamic,1>;
Problem () { }
//! set up constrained least-squares problem
/*! With this constructor, equality constraints (if present) are
* assumed to have been included as the last \e N rows of the
* constraint matrix, and the number of equality constraints is
* passed as the \a num_equalities argument.
*
* If omitted, the \a inequality_constraint_vector defaults to a
* vector of zeros.
*/
Problem (const matrix_type& problem_matrix,
const matrix_type& inequality_constraint_matrix,
const vector_type& inequality_constraint_vector = vector_type(),
size_t num_equalities = 0,
value_type solution_min_norm_regularisation = 0.0,
value_type constraint_min_norm_regularisation = 0.0,
size_t max_iterations = 0,
value_type tolerance = 0.0,
bool problem_in_standard_form = false) :
H (problem_matrix),
chol_HtH (H.cols(), H.cols()),
t (inequality_constraint_vector),
lambda_min_norm (constraint_min_norm_regularisation),
tol (tolerance),
max_niter (max_iterations ? max_iterations : 10*problem_matrix.cols()),
num_eq (num_equalities) {
if (H.cols() != inequality_constraint_matrix.cols())
throw Exception ("FIXME: dimensions of problem and constraint matrices do not match (ICLS)");
if (solution_min_norm_regularisation < 0.0)
throw Exception ("FIXME: solution norm regularisation is negative (ICLS)");
if (lambda_min_norm < 0.0)
throw Exception ("FIXME: constraint norm regularisation is negative (ICLS)");
if (tolerance < 0.0)
throw Exception ("FIXME: tolerance is negative (ICLS)");
if (t.size() && t.size() != inequality_constraint_matrix.rows())
throw Exception ("FIXME: dimensions of constraint matrix and vector do not match (ICLS)");
if (problem_in_standard_form) {
chol_HtH = H;
}
else {
// form quadratic problem matrix H'*H:
chol_HtH.setZero();
chol_HtH.template triangularView<Eigen::Lower>() = H.transpose() * H;
}
// add minimum norm constraint:
chol_HtH.diagonal().array() += solution_min_norm_regularisation * chol_HtH.diagonal().maxCoeff();
// get Cholesky decomposition:
chol_HtH.template triangularView<Eigen::Lower>() = chol_HtH.template selfadjointView<Eigen::Lower>().llt().matrixL();
// form (transpose of) matrix projecting b onto preconditioned
// quadratic problem chol_HtH\H:
if (problem_in_standard_form)
b2d.noalias() = chol_HtH.template triangularView<Eigen::Lower>().transpose().template solve<Eigen::OnTheRight> (Eigen::MatrixXd::Identity (H.rows(),H.cols()));
else
b2d.noalias() = chol_HtH.template triangularView<Eigen::Lower>().transpose().template solve<Eigen::OnTheRight> (H);
// project constraint onto preconditioned quadratic domain,
B.noalias() = chol_HtH.template triangularView<Eigen::Lower>().transpose().template solve<Eigen::OnTheRight> (inequality_constraint_matrix);
for (ssize_t n = 0; n < B.rows(); ++n) {
double norm = B.row(n).norm();
B.row(n) /= norm;
if (t.size())
t[n] /= norm;
}
}
//! set up constrained least-squares problem
/*! With this constructor, equality constraints are passed as a
* distinct \a equality_constraint_matrix along with the
* corresponding \a equality_constraint_vector.
*
* Note that if either \a inequality_constraint_vector or \a
* equality_constraint_vector are specified, \e both must be
* specified.
*/
Problem (const matrix_type& problem_matrix,
const matrix_type& inequality_constraint_matrix,
const matrix_type& equality_constraint_matrix,
const vector_type& inequality_constraint_vector = vector_type(),
const vector_type& equality_constraint_vector = vector_type(),
value_type solution_min_norm_regularisation = 0.0,
value_type constraint_min_norm_regularisation = 0.0,
size_t max_iterations = 0,
value_type tolerance = 0.0,
bool problem_in_standard_form = false) :
Problem (problem_matrix,
concat (inequality_constraint_matrix, equality_constraint_matrix),
concat (inequality_constraint_vector, equality_constraint_vector),
equality_constraint_matrix.rows(),
solution_min_norm_regularisation,
constraint_min_norm_regularisation,
max_iterations,
tolerance,
problem_in_standard_form) {
if (equality_constraint_vector.size() || inequality_constraint_vector.size()) {
if (ssize_t(num_eq) != equality_constraint_vector.size())
throw Exception ("FIXME: dimensions of equality constraint matrix and vector do not match (ICLS)");
}
}
size_t num_parameters () const { return H.cols(); }
size_t num_measurements () const { return H.rows(); }
size_t num_constraints () const { return B.rows(); }
size_t num_equalities () const { return num_eq; }
matrix_type H, chol_HtH, B, b2d;
vector_type t;
value_type lambda_min_norm, tol;
size_t max_niter, num_eq;
static inline matrix_type concat (const matrix_type& a, const matrix_type& b) {
matrix_type c (a.rows()+b.rows(), a.cols());
c.topRows (a.rows()) = a;
c.bottomRows (b.rows()) = b;
return c;
}
static inline vector_type concat (const vector_type& a, const vector_type& b) {
vector_type c (a.size()+b.size());
c.head (a.size()) = a;
c.tail (b.size()) = b;
return c;
}
};
template <typename ValueType>
class Solver { MEMALIGN(Solver<ValueType>)
public:
using value_type = ValueType;
using matrix_type = Eigen::Matrix<value_type,Eigen::Dynamic,Eigen::Dynamic>;
using vector_type = Eigen::Matrix<value_type,Eigen::Dynamic,1>;
Solver (const Problem<value_type>& problem) :
P (problem),
BtB (P.chol_HtH.rows(), P.chol_HtH.cols()),
B (P.B.rows(), P.B.cols()),
y_u (BtB.rows()),
c (P.B.rows()),
c_u (P.B.rows()),
lambda (c.size()),
lambda_prev (c.size()),
l (lambda.size()),
active (lambda.size(), false) { }
size_t operator() (vector_type& x, const vector_type& b)
{
#ifdef MRTRIX_ICLS_DEBUG
std::ofstream l_stream ("l.txt");
std::ofstream n_stream ("n.txt");
#endif
// compute unconstrained solution:
y_u = P.b2d.transpose() * b;
// compute constraint violations for unconstrained solution:
c_u = P.B * y_u;
if (P.t.size())
c_u -= P.t;
const size_t num_eq = P.num_equalities();
const size_t num_ineq = P.num_constraints() - num_eq;
// set all Lagrangian multipliers to zero:
lambda.setZero();
lambda_prev.setZero();
// set active set empty:
std::fill (active.begin(), active.end(), false);
if (num_eq > 0)
std::fill (active.begin() + num_ineq, active.end(), true);
// initial estimate of constraint values:
c = c_u;
// initial estimate of solution:
x = y_u;
size_t min_c_index;
size_t niter = 0;
while (c.head(num_ineq).minCoeff (&min_c_index) < -P.tol) {
bool active_set_changed = !active[min_c_index];
active[min_c_index] = true;
while (1) {
// form submatrix of active constraints:
size_t num_active = 0;
for (size_t n = 0; n < active.size(); ++n) {
if (active[n]) {
B.row (num_active) = P.B.row (n);
l[num_active] = -c_u[n];
++num_active;
}
}
auto B_active = B.topRows (num_active);
auto l_active = l.head (num_active);
BtB.resize (num_active, num_active);
// solve for l in B*B'l = -c_u by Cholesky decomposition:
BtB.template triangularView<Eigen::Lower>() = B_active * B_active.transpose();
BtB.diagonal().array() += P.lambda_min_norm;
BtB.template selfadjointView<Eigen::Lower>().llt().solveInPlace (l_active);
// update lambda values in full vector
// and identify worst offender if any lambda < 0
// by projection from previous onto feasible
// subset (i.e. l>=0):
value_type s_min = std::numeric_limits<value_type>::infinity();
size_t s_min_index = 0;
size_t a = 0;
for (size_t n = 0; n < num_ineq; ++n) {
if (active[n]) {
if (l_active[a] < 0.0) {
value_type s = lambda_prev[n] / (lambda_prev[n] - l_active[a]);
if (s < s_min) {
s_min = s;
s_min_index = n;
}
}
lambda[n] = l_active[a];
++a;
}
else
lambda[n] = 0.0;
}
// if no lambda < 0, proceed:
if (!std::isfinite (s_min)) {
// update solution vector:
x = y_u + B_active.transpose() * l_active;
break;
}
#ifdef MRTRIX_ICLS_DEBUG
l_stream << lambda << "\n";
#endif
// remove worst offending lambda from active set,
// and re-estimate remaining lambdas:
if (active[s_min_index])
active_set_changed = true;
active[s_min_index] = false;
}
// store feasible subset of lambdas:
lambda_prev = lambda;
#ifdef MRTRIX_ICLS_DEBUG
l_stream << lambda << "\n";
for (const auto& a : active)
n_stream << a << " ";
n_stream << "\n";
#endif
++niter;
if (!active_set_changed || niter > P.max_niter)
break;
// compute constraint values at updated solution:
c = P.B * x;
if (P.t.size())
c -= P.t;
}
// project back to unconditioned domain:
P.chol_HtH.template triangularView<Eigen::Lower>().transpose().solveInPlace (x);
return niter;
}
const Problem<value_type>& problem () const { return P; }
protected:
const Problem<value_type>& P;
matrix_type BtB, B;
vector_type y_u, c, c_u, lambda, lambda_prev, l;
vector<bool> active;
};
}
/** @} */
/** @} */
}
}
#endif
|