File: gradient_descent.h

package info (click to toggle)
mrtrix3 3.0.4-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 13,712 kB
  • sloc: cpp: 129,776; python: 9,494; sh: 593; makefile: 234; xml: 47
file content (251 lines) | stat: -rw-r--r-- 9,122 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
/* Copyright (c) 2008-2022 the MRtrix3 contributors.
 *
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/.
 *
 * Covered Software is provided under this License on an "as is"
 * basis, without warranty of any kind, either expressed, implied, or
 * statutory, including, without limitation, warranties that the
 * Covered Software is free of defects, merchantable, fit for a
 * particular purpose or non-infringing.
 * See the Mozilla Public License v. 2.0 for more details.
 *
 * For more details, see http://www.mrtrix.org/.
 */

#ifndef __math_gradient_descent_h__
#define __math_gradient_descent_h__

#include <limits>

namespace MR
{
  namespace Math
  {

    //! \addtogroup Optimisation
    // @{


    namespace {

      class LinearUpdate { NOMEMALIGN
        public:
          template <typename ValueType>
            inline bool operator() (Eigen::Matrix<ValueType, Eigen::Dynamic, 1>& newx, const Eigen::Matrix<ValueType, Eigen::Dynamic, 1>& x,
                const Eigen::Matrix<ValueType, Eigen::Dynamic, 1>& g, ValueType step_size) {
              bool changed = false;
              for (ssize_t n = 0; n < x.size(); ++n) {
                newx[n] = x[n] - step_size * g[n];
                if (newx[n] != x[n])
                  changed = true;
              }
              return changed;
            }
      };

    }

    //! Computes the minimum of a function using a gradient descent approach.
    template <class Function, class UpdateFunctor=LinearUpdate>
      class GradientDescent
      { MEMALIGN(GradientDescent<Function,UpdateFunctor>)
        public:
          using value_type = typename Function::value_type;

          GradientDescent (Function& function, UpdateFunctor update_functor = LinearUpdate(), value_type step_size_upfactor = 3.0, value_type step_size_downfactor = 0.1, bool verbose = false) :
            func (function),
            update_func (update_functor),
            step_up (step_size_upfactor),
            step_down (step_size_downfactor),
            verbose (verbose),
            delim (","),
            niter (0),
            x (func.size()),
            x2 (func.size()),
            g (func.size()),
            g2 (func.size()) { }


          value_type value () const throw () { return f; }
          const Eigen::Matrix<value_type, Eigen::Dynamic, 1>& state () const throw () { return x; }
          const Eigen::Matrix<value_type, Eigen::Dynamic, 1>& gradient () const throw ()  { return g; }
          value_type step_size () const { return dt; }
          value_type gradient_norm () const throw () { return normg; }
          int function_evaluations () const throw () { return nfeval; }

          void be_verbose(bool v) { verbose = v; }
          void precondition (const Eigen::Matrix<value_type, Eigen::Dynamic, 1>& weights) {
            preconditioner_weights = weights;
          }

          void run (const size_t max_iterations = 1000,
            const value_type grad_tolerance = 1e-6,
            std::streambuf* log_stream = nullptr) {
            std::ostream log_os(log_stream? log_stream : nullptr);
            if (log_os){
              log_os << "#iteration" << delim << "feval" << delim << "cost" << delim << "stepsize";
              for ( ssize_t a = 0 ; a < x.size() ; a++ )
                  log_os << delim + "x_" + str(a+1) ;
              for ( ssize_t a = 0 ; a < x.size() ; a++ )
                  log_os << delim + "g_" + str(a+1) ;
              log_os << "\n" << std::flush;
            }
            init (log_os);

            const value_type gradient_tolerance (grad_tolerance * normg);

            DEBUG ("Gradient descent iteration: init; cost: " + str(f));

            while (niter < max_iterations) {
              bool retval = iterate (log_os);
              DEBUG ("Gradient descent iteration: " + str(niter) + "; cost: " + str(f));
              if (verbose) {
                CONSOLE ("iteration " + str (niter) + ": f = " + str (f) + ", |g| = " + str (normg) + ":");
                CONSOLE ("  x = [ " + str(x.transpose()) + "]");
              }

              if (normg < gradient_tolerance) {
                if (verbose)
                  CONSOLE ("normg (" + str(normg) + ") < gradient tolerance (" + str(gradient_tolerance) + ")");
                return;
              }

              if (!retval){
                if (verbose)
                  CONSOLE ("unchanged parameters");
                return;
              }
            }
          }

          void init () {
            std::ostream dummy (nullptr);
            init (dummy);
          }

          void init (std::ostream& log_os) {
            dt = func.init (x);
            nfeval = 0;
            f = evaluate_func (x, g, verbose);
            compute_normg_and_step_unscaled ();
            normg = g.norm();
            assert(std::isfinite(normg));
            assert(!std::isnan(normg));
            dt /= normg;
            if (verbose) {
              CONSOLE ("initialise: f = " + str (f) + ", |g| = " + str (normg) + ":");
              CONSOLE ("  x = [ " + str(x.transpose()) + "]");
            }
            if (normg == 0.0)
              return;
            assert (std::isfinite (f));
            assert (!std::isnan(f));
            assert (std::isfinite (normg));
            assert (!std::isnan(normg));
            if (log_os) {
              log_os << niter << delim << nfeval << delim << str(f) << delim << str(dt);
              for (ssize_t i=0; i< x.size(); ++i){ log_os << delim << str(x(i)); }
              for (ssize_t i=0; i< x.size(); ++i){ log_os << delim << str(g(i)); }
              log_os << std::endl;
            }
          }

          bool iterate () {
            std::ostream dummy (nullptr);
            return iterate (dummy);
          }

          bool iterate (std::ostream& log_os) {
            // assert (normg != 0.0);
            assert (std::isfinite (normg));


            while (normg != 0.0) {
              if (!update_func (x2, x, g, dt))
                return false;

              value_type f2 = evaluate_func (x2, g2, verbose);

              // quadratic minimum:
              value_type step_length = step_unscaled*dt;
              value_type denom = 2.0 * (normg*step_length + f2 - f);
              value_type quadratic_minimum = denom > 0.0 ? normg * step_length / denom : step_up;

              if (quadratic_minimum < step_down) quadratic_minimum = step_down;
              if (quadratic_minimum > step_up) quadratic_minimum = step_up;

              if (f2 < f) {
                ++niter;
                dt *= quadratic_minimum;
                f = f2;
                x.swap (x2);
                g.swap (g2);
                if (log_os) {
                  log_os << niter << delim << nfeval << delim << str(f) << delim << str(dt);
                  for (ssize_t i=0; i< x.size(); ++i){ log_os << delim << str(x(i)); }
                  for (ssize_t i=0; i< x.size(); ++i){ log_os << delim << str(g(i)); }
                  log_os << std::endl;
                }
                compute_normg_and_step_unscaled ();
                return true;
              }

              if (quadratic_minimum >= 1.0)
                quadratic_minimum = 0.5;
              dt *= quadratic_minimum;

              if (dt <= 0.0)
                return false;
            }
            return false;
          }

        protected:
          Function& func;
          UpdateFunctor update_func;
          const value_type step_up, step_down;
          bool verbose;
          std::string delim;
          size_t niter;
          Eigen::Matrix<value_type, Eigen::Dynamic, 1> x, x2, g, g2, preconditioner_weights;
          value_type f, dt, normg, step_unscaled;
          size_t nfeval;

          value_type evaluate_func (const Eigen::Matrix<value_type, Eigen::Dynamic, 1>& newx,
                                    Eigen::Matrix<value_type, Eigen::Dynamic, 1>& newg,
                                    bool verbose = false) {
            nfeval++;
            value_type cost = func (newx, newg);
            if (!std::isfinite (cost))
              throw Exception ("cost function is NaN or Inf!");
            if (verbose)
              CONSOLE ("      << eval " + str(nfeval) + ", f = " + str (cost) + " >>");
            return cost;
          }


          void compute_normg_and_step_unscaled () {
            normg = step_unscaled = g.norm();
            assert(std::isfinite(normg));
            if (normg > 0.0){
              if (preconditioner_weights.size()) {
                value_type g_projected = 0.0;
                for (ssize_t n = 0; n < g.size(); ++n) {
                  g_projected += preconditioner_weights[n] * Math::pow2(g[n]);
                }
                g.array() *= preconditioner_weights.array();
                normg = g_projected / normg;
                assert(std::isfinite(normg));
              }
            }
          }

      };
    //! @}
  }
}

#endif