File: gradient_descent_bb.h

package info (click to toggle)
mrtrix3 3.0.4-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 13,712 kB
  • sloc: cpp: 129,776; python: 9,494; sh: 593; makefile: 234; xml: 47
file content (235 lines) | stat: -rw-r--r-- 8,933 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
/* Copyright (c) 2008-2022 the MRtrix3 contributors.
 *
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/.
 *
 * Covered Software is provided under this License on an "as is"
 * basis, without warranty of any kind, either expressed, implied, or
 * statutory, including, without limitation, warranties that the
 * Covered Software is free of defects, merchantable, fit for a
 * particular purpose or non-infringing.
 * See the Mozilla Public License v. 2.0 for more details.
 *
 * For more details, see http://www.mrtrix.org/.
 */

#ifndef __math_gradient_descent_bb_h__
#define __math_gradient_descent_bb_h__

#include <limits>
#include <iostream>
#include <fstream>
#include <deque>
#include <limits>
#include <fstream>
#include "math/check_gradient.h"

namespace MR
{
  namespace Math
  {

    //! \addtogroup Optimisation
    // @{

    class LinearUpdateBB { NOMEMALIGN
      public:
        template <typename ValueType>
          inline bool operator() (Eigen::Matrix<ValueType, Eigen::Dynamic, 1>& newx, const Eigen::Matrix<ValueType, Eigen::Dynamic, 1>& x,
              const Eigen::Matrix<ValueType, Eigen::Dynamic, 1>& g, ValueType step_size) {
            assert (newx.size() == x.size());
            assert (g.size() == x.size());
            newx = x - step_size * g;
            return !newx.isApprox(x);
          }
  };

    //! Computes the minimum of a function using a Barzilai Borwein gradient descent approach. ENH: implement stabilised version https://arxiv.org/abs/1907.06409
    template <class Function, class UpdateFunctor=LinearUpdateBB>
      class GradientDescentBB
      { MEMALIGN(GradientDescentBB<Function,UpdateFunctor>)
        public:
          using value_type = typename Function::value_type;

          GradientDescentBB (Function& function, UpdateFunctor update_functor = LinearUpdateBB(), bool verbose = false) :
            func (function),
            update_func (update_functor),
            x1 (func.size()),
            x2 (func.size()),
            x3 (func.size()),
            g1 (func.size()),
            g2 (func.size()),
            g3 (func.size()),
            nfeval (0),
            niter (0),
            verbose (verbose),
            delim (",") {  }

          value_type value () const { return f; }
          const Eigen::Matrix<value_type, Eigen::Dynamic, 1>& state () const { return x2; }
          const Eigen::Matrix<value_type, Eigen::Dynamic, 1>& gradient () const { return g2; }
          value_type step_size () const { return dt; }
          value_type gradient_norm () const { return normg; }
          int function_evaluations () const { return nfeval; }

          void be_verbose (bool v) { verbose = v; }
          void precondition (const Eigen::Matrix<value_type, Eigen::Dynamic, 1>& weights) {
            preconditioner_weights = weights;
          }

          void run (const size_t max_iterations = 1000,
                    const value_type grad_tolerance = 1e-6,
                    std::streambuf* log_stream = nullptr)
          {
            std::ostream log_os(log_stream? log_stream : nullptr);
            if (log_os){
              log_os << "#iteration" << delim << "feval" << delim << "cost" << delim << "stepsize";
              for ( ssize_t a = 0 ; a < x1.size() ; a++ )
                  log_os << delim + "x_" + str(a+1) ;
              for ( ssize_t a = 0 ; a < x1.size() ; a++ )
                  log_os << delim + "g_" + str(a+1) ;
              log_os << "\n" << std::flush;
            }
            init (log_os);

            const value_type gradient_tolerance (grad_tolerance * normg);

            DEBUG ("Gradient descent iteration: init; cost: " + str(f));

            while (niter < max_iterations) {
              bool retval = iterate (log_os);
              DEBUG ("Gradient descent iteration: " + str(niter) + "; cost: " + str(f));
              if (verbose){
                CONSOLE ("iteration " + str (niter) + ": f = " + str (f) + ", |g| = " + str (normg) + ":");
                CONSOLE ("  x  = [ " + str(x2.transpose()) + "]");
              }

              if (normg < gradient_tolerance) {
                if (verbose)
                  CONSOLE ("normg (" + str(normg) + ") < gradient tolerance (" + str(gradient_tolerance) + ")");
                return;
              }

              if (!retval){
                if (verbose)
                  CONSOLE ("unchanged parameters");
                return;
              }
            }
          }

          void init () {
            std::ostream dummy (nullptr);
            init (dummy);
          }

          void init (std::ostream& log_os) {
            dt = func.init (x1);
            f = evaluate_func (x1, g1, verbose);
            normg = g1.norm();
            if (normg == 0.0) {
              x2 = x1;
              g2 = g1;
              return;
            }
            assert(std::isfinite(normg)); assert(!std::isnan(normg));
            dt /= normg;
            if (verbose) {
              CONSOLE ("initialise: f = " + str (f) + ", |g| = " + str (normg) + ", step = " + str(dt) + ":");
              CONSOLE ("            x = [ " + str(x1.transpose()) + "]");
            }
            if (log_os) {
              log_os << niter << delim << nfeval << delim << str(f) << delim << str(dt);
              for (ssize_t i=0; i< x2.size(); ++i){ log_os << delim << str(x1(i)); }
              for (ssize_t i=0; i< x2.size(); ++i){ log_os << delim << str(g1(i)); }
              log_os << std::endl;
            }

            assert (std::isfinite(f)); assert (!std::isnan(f));
            assert (std::isfinite (normg)); assert (!std::isnan(normg));

            if (update_func (x2, x1, g1, dt)){
              f = evaluate_func (x2, g2, verbose);
            } else {
              dt = 0.0;
              return;
            }
            compute_normg_and_step ();
            assert (std::isfinite (f)); assert (!std::isnan(f));
            assert (std::isfinite(normg)); assert (!std::isnan(normg));
            if (log_os) {
              log_os << niter << delim << nfeval << delim << str(f) << delim << str(dt);
              for (ssize_t i=0; i< x2.size(); ++i){ log_os << delim << str(x2(i)); }
              for (ssize_t i=0; i< x2.size(); ++i){ log_os << delim << str(g2(i)); }
              log_os << std::endl;
            }
            if (verbose) {
              CONSOLE ("            f = " + str (f) + ", |g| = " + str (normg) + ", step = " + str(dt) + ":");
              CONSOLE ("            x = [ " + str(x2.transpose()) + "]");
            }
          }

          bool iterate () {
            std::ostream dummy (nullptr);
            return iterate (dummy);
          }

          bool iterate (std::ostream& log_os) {
            assert (std::isfinite (normg));
            if ((normg == 0.0) or !update_func (x3, x2, g2, dt))
              return false;

            f = evaluate_func (x3, g3, verbose);
            x2.swap(x3);
            x1.swap(x3);
            g2.swap(g3);
            g1.swap(g3);
            ++niter;
            if (log_os) {
              log_os << niter << delim << nfeval << delim << str(f) << delim << str(dt);
              for (ssize_t i=0; i< x2.size(); ++i){ log_os << delim << str(x2(i)); }
              for (ssize_t i=0; i< x2.size(); ++i){ log_os << delim << str(g2(i)); }
              log_os << std::endl;
            }
            compute_normg_and_step ();
            return true;
          }

        protected:
          Function& func;
          UpdateFunctor update_func;
          Eigen::Matrix<value_type, Eigen::Dynamic, 1> x1, x2, x3, g1, g2, g3, preconditioner_weights;
          value_type f, dt, normg;
          size_t nfeval;
          size_t niter;
          bool verbose;
          std::string delim;

          value_type evaluate_func (const Eigen::Matrix<value_type, Eigen::Dynamic, 1>& newx, Eigen::Matrix<value_type, Eigen::Dynamic, 1>& newg, bool verbose = false) {
            ++nfeval;
            value_type cost = func (newx, newg);
            if (!std::isfinite (cost))
              throw Exception ("cost function is NaN or Inf!");
            if (verbose){
              CONSOLE ("      << eval " + str(nfeval) + ", f = " + str (cost) + " >>");
              CONSOLE ("      << newx = [ " + str(newx.transpose()) + "]");
              CONSOLE ("      << newg = [ " + str(newg.transpose()) + "]");
            }
            return cost;
          }

          void compute_normg_and_step () {
            if (preconditioner_weights.size()) {
              g2.array() *= preconditioner_weights.array();
            }
            normg = g2.norm();
            assert((g2-g1).norm()>0.0);
            dt = (x2-x1).norm()/(g2-g1).norm();
          }
      };
    //! @}
  }
}

#endif