1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
|
/* Copyright (c) 2008-2022 the MRtrix3 contributors.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* Covered Software is provided under this License on an "as is"
* basis, without warranty of any kind, either expressed, implied, or
* statutory, including, without limitation, warranties that the
* Covered Software is free of defects, merchantable, fit for a
* particular purpose or non-infringing.
* See the Mozilla Public License v. 2.0 for more details.
*
* For more details, see http://www.mrtrix.org/.
*/
#ifndef __math_median_h__
#define __math_median_h__
#include <algorithm>
#include <limits>
#include "types.h"
#include "app.h"
namespace MR
{
namespace Math
{
namespace {
template <typename X>
inline bool not_a_number (X x) {
return false;
}
template <> inline bool not_a_number (float x) { return std::isnan (x); }
template <> inline bool not_a_number (double x) { return std::isnan (x); }
}
template <class Container>
inline typename Container::value_type median (Container& list)
{
size_t num = list.size();
// remove NaNs:
for (size_t n = 0; n < num; ++n) {
while (not_a_number (list[n]) && n < num) {
--num;
//std::swap (list[n], list[num]);
// Commented std::swap to provide bool compatibility
typename Container::value_type temp = list[num]; list[num] = list[n]; list[n] = temp;
}
}
if (!num)
return std::numeric_limits<typename Container::value_type>::quiet_NaN();
size_t middle = num/2;
std::nth_element (list.begin(), list.begin()+middle, list.begin()+num);
typename Container::value_type med_val = list[middle];
if (!(num&1U)) {
--middle;
std::nth_element (list.begin(), list.begin()+middle, list.begin()+middle+1);
med_val = (med_val + list[middle])/2.0;
}
return med_val;
}
// Weiszfeld median
template <class MatrixType = Eigen::Matrix<default_type, 3, Eigen::Dynamic>, class VectorType = Eigen::Matrix<default_type, 3, 1>>
bool median_weiszfeld(const MatrixType& X, VectorType& median, const size_t numIter = 300, const default_type precision = 0.00001) {
assert(X.cols() >= 2 && "cannot compute weiszfeld median for less than two points");
assert(X.rows() >= 2 && "weisfeld median for one dimensional data is not unique. did you mean the median?");
const size_t dimensionality = X.rows();
// initialise to the centroid
assert(median.rows() >= 2);
assert(median.rows() == X.rows());
median = X.transpose().colwise().mean();
size_t m = X.cols();
// If the init point is in the set of points, we shift it:
size_t n = (X.colwise() - median).colwise().squaredNorm().nonZeros();
while (n != m){ // (X.colwise() - median).colwise().squaredNorm().transpose().colwise().minCoeff() > 0.000001;
median(0) += 10 * precision;
n = (X.colwise() - median).colwise().squaredNorm().nonZeros();
}
bool convergence = false;
vector<default_type> dist(numIter);
// Minimizing the sum of the squares of the distances between each point in 'X' and the median.
size_t i = 0;
Eigen::Matrix<default_type, Eigen::Dynamic, 1> s1;
s1.resize(dimensionality,1);
while ( !convergence && (i < numIter) ) {
default_type norm = 0.0;
s1.setZero();
default_type denum = 0.0;
default_type sdist = 0.0;
for (size_t j = 0; j < m; ++j){
norm = (X.col(j) - median).norm();
s1 += X.col(j) / norm;
denum += 1.0 / norm;
sdist += norm;
}
dist[i] = sdist;
if (denum == 0.0 or std::isnan(denum)){
WARN ("Could not compute geometric median!" );
break;
}
median = s1 / denum;
if (i > 3){
convergence=(abs(dist[i]-dist[i-2])<precision);
}
++i;
}
if (i == numIter)
WARN ("Weiszfeld's median algorithm did not converge after "+str(numIter)+" iterations");
// std::cerr << str(dist) << std::endl;
return convergence;
}
}
}
#endif
|