1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
|
/* Copyright (c) 2008-2022 the MRtrix3 contributors.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* Covered Software is provided under this License on an "as is"
* basis, without warranty of any kind, either expressed, implied, or
* statutory, including, without limitation, warranties that the
* Covered Software is free of defects, merchantable, fit for a
* particular purpose or non-infringing.
* See the Mozilla Public License v. 2.0 for more details.
*
* For more details, see http://www.mrtrix.org/.
*/
#ifndef __math_quadratic_line_search_h__
#define __math_quadratic_line_search_h__
#include "progressbar.h"
namespace MR
{
namespace Math
{
/** \addtogroup Optimisation
@{ */
//! Computes the minimum of a 1D function using a quadratic line search.
/*! This functor operates on a cost function class that must define a
* operator() const method. The method must take a single ValueType
* argument x and return the cost of the function at x.
*
* This line search is fast for functions that are smooth and convex.
* Functions that do not obey these criteria may not converge.
*
* The min_bound and max_bound arguments define values that are used to
* initialise the search. If these bounds do not bracket the minimum,
* then the search will return NaN. Furthermore, if the relevant function
* is not sufficiently smooth, and the search begins to diverge before
* finding a local minimum to within the specified tolerance, then the
* search will also return NaN.
*
* This effect can be cancelled by calling:
* \code
* set_exit_if_outside_bounds (false);
* \endcode
* That way, if the estimated minimum is outside the current
* bracketed area, the search area will be widened accordingly, and the
* process repeated until a local minimum is found to within the specified
* tolerance. Beware however; there is no guarantee that the search will
* converge in all cases, so be conscious of the nature of your data.
*
*
* Typical usage:
* \code
* CostFunction cost_function();
* QuadraticLineSearch<double> line_search (-1.0, 1.0);
* line_search.set_tolerance (0.01);
* line_search.set_message ("optimising");
* const double optimal_value = line_search (cost_function);
*
* \endcode
*/
template <typename ValueType>
class QuadraticLineSearch
{ MEMALIGN(QuadraticLineSearch<ValueType>)
public:
// TODO Return error code if converging toward a maxima instead of a minima
// TODO Separate return codes for above & below domain
enum return_t {SUCCESS, EXECUTING, OUTSIDE_BOUNDS, NONCONVEX, NONCONVERGING};
QuadraticLineSearch (const ValueType lower_bound, const ValueType upper_bound) :
init_lower (lower_bound),
init_mid (0.5 * (lower_bound + upper_bound)),
init_upper (upper_bound),
value_tolerance (0.001 * (upper_bound - lower_bound)),
function_tolerance (0.0),
exit_outside_bounds (true),
max_iters (50),
status (SUCCESS) { }
void set_lower_bound (const ValueType i) { init_lower = i; }
void set_init_estimate (const ValueType i) { init_mid = i; }
void set_upper_bound (const ValueType i) { init_upper = i; }
void set_value_tolerance (const ValueType i) { value_tolerance = i; }
void set_function_tolerance (const ValueType i) { function_tolerance = i; }
void set_exit_if_outside_bounds (const bool i) { exit_outside_bounds = i; }
void set_max_iterations (const size_t i) { max_iters = i; }
void set_message (const std::string& i) { message = i; }
return_t get_status() const { return status; }
template <class Functor>
ValueType operator() (Functor& functor) const
{
status = EXECUTING;
std::unique_ptr<ProgressBar> progress (message.size() ? new ProgressBar (message) : nullptr);
ValueType l = init_lower, m = init_mid, u = init_upper;
ValueType fl = functor (l), fm = functor (m), fu = functor (u);
// TODO Need to test if these bounds are producing a NaN CF
size_t iters = 0;
while (iters++ < max_iters) {
// TODO When testing for nonconvexity, the problem may also arise due to quantisation
// in the cost function
// Would like to have a fractional threshold on the cost function i.e. if it's really flat,
// return successfully
// Difficult to do this without knowledge of the cost function
if (fm > (fl + ((fu-fl)*(m-l)/(u-l)))) {
if ((std::min(m-l, u-m) < value_tolerance) || (abs((fu-fl)/(0.5*(fu+fl))) < function_tolerance)) {
status = SUCCESS;
return m;
}
status = NONCONVEX;
return NaN;
}
const ValueType sl = (fm-fl) / (m-l);
const ValueType su = (fu-fm) / (u-m);
const ValueType n = (0.5*(l+m)) - ((sl*(u-l)) / (2.0*(su-sl)));
const ValueType fn = functor (n);
if (!std::isfinite(fn))
return m;
if (n < l) {
if (exit_outside_bounds) {
status = OUTSIDE_BOUNDS;
return NaN;
}
u = m; fu = fm;
m = l; fm = fl;
l = n; fl = fn;
} else if (n < m) {
if (fn > fm) {
l = n; fl = fn;
} else {
u = m; fu = fm;
m = n; fm = fn;
}
} else if (n == m) {
return n;
} else if (n < u) {
if (fn > fm) {
u = n; fu = fn;
} else {
l = m; fl = fm;
m = n; fm = fn;
}
} else {
if (exit_outside_bounds) {
status = OUTSIDE_BOUNDS;
return NaN;
}
l = m; fl = fm;
m = u; fm = fu;
u = n; fu = fn;
}
if (progress)
++(*progress);
if ((u-l) < value_tolerance) {
status = SUCCESS;
return m;
}
}
status = NONCONVERGING;
return NaN;
}
template <class Functor>
ValueType verbose (Functor& functor) const
{
status = EXECUTING;
ValueType l = init_lower, m = init_mid, u = init_upper;
ValueType fl = functor (l), fm = functor (m), fu = functor (u);
std::cerr << "Initialising quadratic line search\n";
std::cerr << " Lower Mid Upper\n";
std::cerr << "Pos " << str (l) << " " << str(m) << " " << str(u) << "\n";
std::cerr << "Value " << str (fl) << " " << str(fm) << " " << str(fu) << "\n";
size_t iters = 0;
while (iters++ < max_iters) {
if (fm > (fl + ((fu-fl)*(m-l)/(u-l)))) {
if (std::min(m-l, u-m) < value_tolerance) {
std::cerr << "Returning due to nonconvexity, through successfully\n";
status = SUCCESS;
return m;
}
status = NONCONVEX;
std::cerr << "Returning due to nonconvexity, unsuccessfully\n";
return NaN;
}
const ValueType sl = (fm-fl) / (m-l);
const ValueType su = (fu-fm) / (u-m);
const ValueType n = (0.5*(l+m)) - ((sl*(u-l)) / (2.0*(su-sl)));
const ValueType fn = functor (n);
std::cerr << " New point " << str(n) << ", value " << str(fn) << "\n";
if (n < l) {
if (exit_outside_bounds) {
status = OUTSIDE_BOUNDS;
return NaN;
}
u = m; fu = fm;
m = l; fm = fl;
l = n; fl = fn;
} else if (n < m) {
if (fn > fm) {
l = n; fl = fn;
} else {
u = m; fu = fm;
m = n; fm = fn;
}
} else if (n == m) {
return n;
} else if (n < u) {
if (fn > fm) {
u = n; fu = fn;
} else {
l = m; fl = fm;
m = n; fm = fn;
}
} else {
if (exit_outside_bounds) {
status = OUTSIDE_BOUNDS;
return NaN;
}
l = m; fl = fm;
m = u; fm = fu;
u = n; fu = fn;
}
std::cerr << "\n";
std::cerr << "Pos " << str (l) << " " << str(m) << " " << str(u) << "\n";
std::cerr << "Value " << str (fl) << " " << str(fm) << " " << str(fu) << "\n";
if ((u-l) < value_tolerance) {
status = SUCCESS;
std::cerr << "Returning successfully\n";
return m;
}
}
status = NONCONVERGING;
std::cerr << "Returning due to too many iterations\n";
return NaN;
}
private:
ValueType init_lower, init_mid, init_upper, value_tolerance, function_tolerance;
bool exit_outside_bounds;
size_t max_iters;
std::string message;
mutable return_t status;
};
}
}
#endif
|