1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
|
/* Copyright (c) 2008-2022 the MRtrix3 contributors.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* Covered Software is provided under this License on an "as is"
* basis, without warranty of any kind, either expressed, implied, or
* statutory, including, without limitation, warranties that the
* Covered Software is free of defects, merchantable, fit for a
* particular purpose or non-infringing.
* See the Mozilla Public License v. 2.0 for more details.
*
* For more details, see http://www.mrtrix.org/.
*/
#ifndef __math_one_over_cosh_h__
#define __math_one_over_cosh_h__
#include "math/math.h"
#include "math/vector.h"
namespace MR {
namespace Math {
namespace Sech {
template <typename T> inline T lnP (const T measured, const T actual, const T one_over_noise_squared)
{
T n = sqrt (one_over_noise_squared);
T e = n * (actual - measured);
if (e < -20.0) e = -e;
else if (e <= 20.0) { e = exp(e); e = log (e + 1.0/e); }
return (e - 0.5*log (one_over_noise_squared));
}
template <typename T> inline T lnP (const T measured, const T actual, const T one_over_noise_squared, T& dP_dactual, T& dP_dN)
{
assert (one_over_noise_squared > 0.0);
T n = sqrt(one_over_noise_squared);
T e = n * (actual - measured);
T lnP;
if (e < -20.0) { lnP = -e; e = -1.0; }
else if (e <= 20.0) { e = exp (e); lnP = e + 1.0/e; e = (e - 1.0/e) / lnP; lnP = log (lnP); }
else { lnP = e; e = 1.0; }
dP_dactual = n * e;
dP_dN = 0.5 * ((actual - measured) * e / n - 1.0/one_over_noise_squared);
return (lnP - 0.5*log (one_over_noise_squared));
}
template <typename T> inline T lnP (const int N, const T* measured, const T* actual, const T one_over_noise_squared)
{
assert (one_over_noise_squared > 0.0);
T n = sqrt (one_over_noise_squared);
T lnP = 0.0;
for (int i = 0; i < N; i++) {
T e = n * (actual[i] - measured[i]);
if (e < -20.0) e = -e;
else if (e <= 20.0) { e = exp (e); e = log (e + 1.0/e); }
lnP += e;
}
return (lnP - 0.5*N*log (one_over_noise_squared));
}
template <typename T> inline T lnP (const Math::Vector<T>& measured, const Math::Vector<T>& actual, const T one_over_noise_squared)
{
assert (one_over_noise_squared > 0.0);
assert (measured.size() == actual.size());
T n = sqrt (one_over_noise_squared);
T lnP = 0.0;
for (size_t i = 0; i < actual.size(); i++) {
T e = n * (actual[i] - measured[i]);
if (e < -20.0) e = -e;
else if (e <= 20.0) { e = exp (e); e = log (e + 1.0/e); }
lnP += e;
}
return (lnP - 0.5*actual.size()*log (one_over_noise_squared));
}
template <typename T> inline T lnP (const int N, const T* measured, const T* actual, const T one_over_noise_squared, T* dP_dactual, T& dP_dN)
{
assert (one_over_noise_squared > 0.0);
T n = sqrt (one_over_noise_squared);
T lnP = 0.0;
dP_dN = 0.0;
for (int i = 0; i < N; i++) {
T e = n * (actual[i] - measured[i]);
T t;
if (e < -20.0) { t = -e; e = -1.0; }
else if (e <= 20.0) { e = exp (e); t = e + 1.0/e; e = (e - 1.0/e) / t; t = log (t); }
else { t = e; e = 1.0; }
lnP += t;
dP_dactual[i] = n * e;
dP_dN += (actual[i] - measured[i]) * e;
}
dP_dN = 0.5 * (dP_dN / n - N / one_over_noise_squared);
return (lnP - 0.5*N*log (one_over_noise_squared));
}
template <typename T> inline T lnP (const Math::Vector<T>& measured, const Math::Vector<T>& actual, const T one_over_noise_squared, Math::Vector<T>& dP_dactual, T& dP_dN)
{
assert (one_over_noise_squared > 0.0);
assert (measured.size() == actual.size());
T n = sqrt (one_over_noise_squared);
T lnP = 0.0;
dP_dN = 0.0;
for (size_t i = 0; i < actual.size(); i++) {
T e = n * (actual[i] - measured[i]);
T t;
if (e < -20.0) { t = -e; e = -1.0; }
else if (e <= 20.0) { e = exp (e); t = e + 1.0/e; e = (e - 1.0/e) / t; t = log (t); }
else { t = e; e = 1.0; }
lnP += t;
dP_dactual[i] = n * e;
dP_dN += (actual[i] - measured[i]) * e;
}
dP_dN = 0.5 * (dP_dN / n - actual.size() / one_over_noise_squared);
return (lnP - 0.5*actual.size()*log (one_over_noise_squared));
}
}
}
}
#endif
|