1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
|
/* Copyright (c) 2008-2022 the MRtrix3 contributors.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* Covered Software is provided under this License on an "as is"
* basis, without warranty of any kind, either expressed, implied, or
* statutory, including, without limitation, warranties that the
* Covered Software is free of defects, merchantable, fit for a
* particular purpose or non-infringing.
* See the Mozilla Public License v. 2.0 for more details.
*
* For more details, see http://www.mrtrix.org/.
*/
#ifndef __math_stats_glm_h__
#define __math_stats_glm_h__
#include "app.h"
#include "types.h"
#include "math/condition_number.h"
#include "math/least_squares.h"
#include "math/zstatistic.h"
#include "math/stats/import.h"
#include "math/stats/typedefs.h"
#include "misc/bitset.h"
namespace MR
{
namespace Math
{
namespace Stats
{
namespace GLM
{
extern const char* const column_ones_description;
App::OptionGroup glm_options (const std::string& element_name);
// Define a base class to contain information regarding an individual hypothesis, and
// pre-compute as much as possible with regards to Freedman-Lane
// Note: This can be constructed for both t-tests and F-tests
// (This is why the constructor is a template: Could be created either from a row()
// call on the contrast matrix, or from a matrix explicitly constructed from a set of
// rows from the contrast matrix, which is how an F-test is constructed.
// In the case of a single-row F-test, still need to be able to differentiate between
// a t-test and an F-test for the sake of signedness (and taking the square root);
// this is managed by having two separate constructor templates
class Hypothesis
{ MEMALIGN(Hypothesis)
public:
class Partition
{ MEMALIGN (Partition)
public:
Partition (const matrix_type& x, const matrix_type& z) :
X (x),
Z (z),
Hz (Z.cols() ?
(Z * Math::pinv (Z)) :
matrix_type (matrix_type::Zero (X.rows(), X.rows()))),
Rz (matrix_type::Identity (X.rows(), X.rows()) - Hz),
rank_x (Math::rank (X)),
rank_z (Z.cols() ? Math::rank (Z) : 0) { }
// X = Component of design matrix related to effect of interest
// Z = Component of design matrix related to nuisance regressors
const matrix_type X, Z;
// Hz: Projection matrix of nuisance regressors only
// Rz: Residual-forming matrix due to nuisance regressors only
const matrix_type Hz, Rz;
// rank_x: Rank of X
// rank_z: Rank of Z
const size_t rank_x, rank_z;
};
Hypothesis (matrix_type::ConstRowXpr& in, const size_t index) :
c (in),
r (Math::rank (c)),
F (false),
i (index) { check_nonzero(); }
Hypothesis (const matrix_type& in, const size_t index) :
c (check_rank (in, index)),
r (Math::rank (c)),
F (true),
i (index) { check_nonzero(); }
Partition partition (const matrix_type&) const;
const matrix_type& matrix() const { return c; }
ssize_t cols() const { return c.cols(); }
size_t rank() const { return r; }
bool is_F() const { return F; }
std::string name() const { return std::string(F ? "F" : "t") + str(i+1); }
private:
const matrix_type c;
const size_t r;
const bool F;
const size_t i;
void check_nonzero() const;
matrix_type check_rank (const matrix_type&, const size_t) const;
};
void check_design (const matrix_type&, const bool);
index_array_type load_variance_groups (const size_t num_inputs);
vector<Hypothesis> load_hypotheses (const std::string& file_path);
/** \addtogroup Statistics
@{ */
/*! Compute a matrix of the beta coefficients
* @param measurements a matrix storing the measured data across subjects in each column
* @param design the design matrix
* @return the matrix containing the output GLM betas (one column of factor betas per element)
*/
matrix_type solve_betas (const matrix_type& measurements, const matrix_type& design);
/*! Compute the effect of interest
* @param measurements a matrix storing the measured data across subjects in each column
* @param design the design matrix
* @param hypothesis a Hypothesis class instance defining the effect of interest
* @return the matrix containing the output absolute effect sizes (one column of element effect sizes per contrast)
*/
vector_type abs_effect_size (const matrix_type& measurements, const matrix_type& design, const Hypothesis& hypothesis);
matrix_type abs_effect_size (const matrix_type& measurements, const matrix_type& design, const vector<Hypothesis>& hypotheses);
/*! Compute the pooled standard deviation
* @param measurements a matrix storing the measured data across subjects in each column
* @param design the design matrix
* @return the vector containing the output standard deviation for each element
*/
matrix_type stdev (const matrix_type& measurements, const matrix_type& design);
/*! Compute the standard deviation of each variance group
* @param measurements a matrix storing the measured data across subjects in each column
* @param design the design matrix
* @return the vector containing the output standard deviation for each element
*/
matrix_type stdev (const matrix_type& measurements, const matrix_type& design, const index_array_type& variance_groups);
/*! Compute cohen's d, the standardised effect size between two means
* @param measurements a matrix storing the measured data across subjects in each column
* @param design the design matrix
* @param hypothesis a Hypothesis class instance defining the effect of interest
* @return the matrix containing the output standardised effect sizes (one column of element effect sizes per contrast)
*/
vector_type std_effect_size (const matrix_type& measurements, const matrix_type& design, const Hypothesis& hypothesis);
matrix_type std_effect_size (const matrix_type& measurements, const matrix_type& design, const vector<Hypothesis>& hypotheses);
/*! Compute all GLM-related statistics
* This function can be used when the design matrix remains fixed for all
* elements to be tested.
* @param measurements a matrix storing the measured data for each subject in a column
* @param design the design matrix
* @param hypotheses a vector of Hypothesis class instances defining the effects of interest
* @param betas the matrix containing the output GLM betas
* @param abs_effect_size the matrix containing the output effect
* @param std_effect_size the matrix containing the output standardised effect size
* @param stdev the matrix containing the output standard deviation
*/
void all_stats (const matrix_type& measurements, const matrix_type& design, const vector<Hypothesis>& hypotheses, const index_array_type& variance_groups,
matrix_type& betas, matrix_type& abs_effect_size, matrix_type& std_effect_size, matrix_type& stdev);
/*! Compute all GLM-related statistics
* This function can be used when the design matrix varies between elements,
* due to importing external data for each element from external files
* @param measurements a matrix storing the measured data for each subject in a column
* @param design the fixed portion of the design matrix
* @param extra_columns the variable columns of the design matrix
* @param hypotheses a vector of Hypothesis class instances defining the effects of interest
* @param betas the matrix containing the output GLM betas
* @param abs_effect_size the matrix containing the output effect
* @param std_effect_size the matrix containing the output standardised effect size
* @param stdev the matrix containing the output standard deviation
*/
void all_stats (const matrix_type& measurements, const matrix_type& design, const vector<CohortDataImport>& extra_columns, const vector<Hypothesis>& hypotheses, const index_array_type& variance_groups,
vector_type& cond, matrix_type& betas, matrix_type& abs_effect_size, matrix_type& std_effect_size, matrix_type& stdev);
//! @}
// Define a base class for GLM tests
class TestBase
{ MEMALIGN(TestBase)
public:
TestBase (const matrix_type& measurements, const matrix_type& design, const vector<Hypothesis>& hypotheses) :
y (measurements),
M (design),
c (hypotheses),
stat2z (new Math::Zstatistic())
{
assert (y.rows() == M.rows());
// Can no longer apply this assertion here; GLMTTestVariable later
// expands the number of columns in M
//assert (c.cols() == M.cols());
}
virtual ~TestBase() { }
/*! Compute Z-statistics
* @param shuffling_matrix a matrix to permute / sign flip the residuals (for permutation testing)
* @param output the matrix containing the output statistics (one column per hypothesis)
*
* This version ignores the statistics values themselves, and only exports Z-statistics
* (as these are what is used for statistical enhancement)
*/
virtual void operator() (const matrix_type& shuffling_matrix, matrix_type& output) const;
/*! Compute the statistics, including conversion to Z-score
* @param shuffling_matrix a matrix to permute / sign flip the residuals (for permutation testing)
* @param stat the matrix containing the output statistics (one column per hypothesis)
* @param zstat the matrix containing the Z-transformed statistics (one column per hypothesis)
*/
virtual void operator() (const matrix_type& shuffling_matrix, matrix_type& stat, matrix_type& zstat) const = 0;
size_t num_inputs () const { return M.rows(); }
size_t num_elements () const { return y.cols(); }
size_t num_hypotheses () const { return c.size(); }
virtual size_t num_factors() const { return M.cols(); }
protected:
const matrix_type& y, M;
const vector<Hypothesis>& c;
std::shared_ptr<Math::Zstatistic> stat2z;
};
/** \addtogroup Statistics
@{ */
/*! A class to compute statistics from homoscedastic using a fixed General Linear Model.
* This class produces a statistic per effect of interest: t-statistic for
* t-tests, sqrt(F-statistic) for F-tests. It should be used in cases where:
* - the same design matrix is to be applied for all image elements being
* tested (it is thus able to pre-compute a number of matrices before testing,
* improving execution speed);
* - When the data are considered to be homoscedastic; that is, the variance is
* equivalent across all inputs.
*/
class TestFixedHomoscedastic : public TestBase
{ MEMALIGN(TestFixedHomoscedastic)
public:
/*!
* @param measurements a matrix storing the measured data across subjects in each column
* @param design the design matrix
* @param hypotheses a vector of Hypothesis instances
*/
TestFixedHomoscedastic (const matrix_type& measurements,
const matrix_type& design,
const vector<Hypothesis>& hypotheses);
/*! Compute the statistics
* @param shuffling_matrix a matrix to permute / sign flip the residuals (for permutation testing)
* @param stats the vector containing the output statistics (one column per hypothesis)
* @param zstats the vector containing the Z-transformed output statistics (one column per hypothesis)
*/
void operator() (const matrix_type& shuffling_matrix, matrix_type& stats, matrix_type& zstats) const override;
protected:
// New classes to store information relevant to Freedman-Lane implementation
vector<Hypothesis::Partition> partitions;
const matrix_type pinvM;
const matrix_type Rm;
vector<matrix_type> XtX;
vector<default_type> one_over_dof;
};
//! @}
/** \addtogroup Statistics
@{ */
/*! A class to compute statistics from heteroscedastic data using a fixed General Linear Model.
* This class produces a statistic per effect of interest: Aspin-Welsh v for
* contrast vectors (i.e. Rank(C) == 1), sqrt(Welsh's v^2) for Rank(C) > 1. It should be used in
* cases where:
* - The same design matrix is to be applied for all image elements being tested;
* - The input data are considered to be heteroscedastic; that is, the variance is not equivalent
* between all observations, but these can be placed into "variance groups", within which
* all observations can be considered to have the same variance.
*/
class TestFixedHeteroscedastic : public TestFixedHomoscedastic
{ MEMALIGN(TestFixedHeteroscedastic)
public:
/*!
* @param measurements a matrix storing the measured data across subjects in each column
* @param design the design matrix
* @param hypotheses a vector of Hypothesis instances
* @param variance_groups a vector of integers corresponding to variance group assignments (should be indexed from zero)
*/
TestFixedHeteroscedastic (const matrix_type& measurements,
const matrix_type& design,
const vector<Hypothesis>& hypotheses,
const index_array_type& variance_groups);
size_t num_variance_groups() const { return num_vgs; }
/*! Compute the statistics
* @param shuffling_matrix a matrix to permute / sign flip the residuals (for permutation testing)
* @param stats the vector containing the output statistics (one column per hypothesis)
* @param zstats the vector containing the Z-transformed output statistics (one column per hypothesis)
*/
void operator() (const matrix_type& shuffling_matrix, matrix_type& stats, matrix_type& zstats) const override;
protected:
// Variance group assignments
const index_array_type& VG;
// Total number of variance groups
const size_t num_vgs;
// Number of inputs that are part of each variance group
vector<size_t> inputs_per_vg;
// Might as well construct this in the functor rather than here,
// given 1 value for each VG is computed
vector_type Rnn_sums;
// Also store the reciprocal of these, so as to avoid repeated division
vector_type inv_Rnn_sums;
// Multiplication weights for calculation of gamma;
// varies depending on the rank of the contrast matrix of each hypothesis
vector_type gamma_weights;
};
//! @}
/** \addtogroup Statistics
@{ */
/*! A class to compute statistics from homoscedastic data using a variable General Linear Model.
* This class produces a statistic per effect of interest. It should be used in
* cases where:
* - Additional subject data must be imported into the design matrix before
* computing t- / F-values; the design matrix therefore does not remain fixed for all
* elements being tested, but varies depending on the particular element being tested.
* How additional data is imported into the design matrix will depend on the
* particular type of data being tested. Therefore an Importer class must be
* defined that is responsible for acquiring and vectorising these data.
* - Input data are considered to be homoscedastic; that is, the variance is
* equivalent across all inputs.
*/
class TestVariableHomoscedastic : public TestBase
{ MEMALIGN(TestVariableHomoscedastic)
public:
TestVariableHomoscedastic (const vector<CohortDataImport>& importers,
const matrix_type& measurements,
const matrix_type& design,
const vector<Hypothesis>& hypotheses,
const bool nans_in_data,
const bool nans_in_columns);
/*! Compute the statistics
* @param shuffling_matrix a matrix to permute / sign flip the residuals (for permutation testing)
* @param stat the vector containing the native output statistics (one column per hypothesis)
* @param zstat the vector containing the Z-transformed output statistics (one column per hypothesis)
*
* In TestVariable* classes, this function additionally needs to import the
* extra external data individually for each element tested.
*/
void operator() (const matrix_type& shuffling_matrix, matrix_type& stat, matrix_type& zstat) const override;
size_t num_factors() const override { return M.cols() + importers.size(); }
protected:
const vector<CohortDataImport>& importers;
const bool nans_in_data, nans_in_columns;
void get_mask (const size_t ie, BitSet&, const matrix_type& extra_columns) const;
void apply_mask (const BitSet& mask,
matrix_type::ConstColXpr data,
const matrix_type& shuffling_matrix,
const matrix_type& extra_column_data,
matrix_type& Mfull_masked,
matrix_type& shuffling_matrix_masked,
vector_type& y_masked) const;
};
/** \addtogroup Statistics
@{ */
/*! A class to compute statistics from heteroscedastic data using a variable General Linear Model.
* This class produces a statistic per effect of interest. It should be used in
* cases where:
* - Additional subject data must be imported into the design matrix before
* computing t- / F-values; the design matrix therefore does not remain fixed for all
* elements being tested, but varies depending on the particular element being tested.
* How additional data is imported into the design matrix will depend on the
* particular type of data being tested. Therefore an Importer class must be
* defined that is responsible for acquiring and vectorising these data.
* - The input data are considered to be heteroscedastic; that is, the variance is not equivalent
* between all observations, but these can be placed into "variance groups", within which
* all observations can be considered to have the same variance.
*/
class TestVariableHeteroscedastic : public TestVariableHomoscedastic
{ MEMALIGN(TestVariableHeteroscedastic)
public:
TestVariableHeteroscedastic (const vector<CohortDataImport>& importers,
const matrix_type& measurements,
const matrix_type& design,
const vector<Hypothesis>& hypotheses,
const index_array_type& variance_groups,
const bool nans_in_data,
const bool nans_in_columns);
/*! Compute the statistics
* @param shuffling_matrix a matrix to permute / sign flip the residuals (for permutation testing)
* @param stat the vector containing the native output statistics (one column per hypothesis)
* @param zstat the vector containing the Z-transformed output statistics (one column per hypothesis)
*
* In TestVariable* classes, this function additionally needs to import the
* extra external data individually for each element tested.
*/
void operator() (const matrix_type& shuffling_matrix, matrix_type& stat, matrix_type& zstat) const override;
size_t num_factors() const override { return M.cols() + importers.size(); }
size_t num_variance_groups() const { return num_vgs; }
protected:
// Only a limited amount can be pre-calculated from the variance group information;
// other data may vary as rows of the design matrix & data are excluded
const index_array_type& VG;
const size_t num_vgs;
vector_type gamma_weights;
// Need to apply the row selection mask to the variance groups in addition to other data
void apply_mask_VG (const BitSet& mask,
index_array_type& VG_masked,
index_array_type& VG_counts) const;
};
}
}
}
}
#endif
|