1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
|
/* Copyright (c) 2008-2022 the MRtrix3 contributors.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* Covered Software is provided under this License on an "as is"
* basis, without warranty of any kind, either expressed, implied, or
* statutory, including, without limitation, warranties that the
* Covered Software is free of defects, merchantable, fit for a
* particular purpose or non-infringing.
* See the Mozilla Public License v. 2.0 for more details.
*
* For more details, see http://www.mrtrix.org/.
*/
#include "math/zstatistic.h"
#include "math/betainc.h"
#include "math/erfinv.h"
#include "math/hermite.h"
#include "math/math.h"
#include "debug.h"
namespace MR
{
namespace Math
{
namespace
{
default_type F2z_upper (const default_type F, const size_t rank, const default_type dof)
{
assert (F >= 1.0);
const default_type x = (dof/F) / (dof/F + default_type(rank));
return Math::sqrt2 * Math::erfcinv (2.0 *
#ifdef MRTRIX_HAVE_EIGEN_UNSUPPORTED_SPECIAL_FUNCTIONS
Math::betaincreg (Eigen::Array<default_type, Eigen::Dynamic, 1>::Constant (1, 0.5 * dof),
Eigen::Array<default_type, Eigen::Dynamic, 1>::Constant (1, 0.5 * default_type(rank)),
Eigen::Array<default_type, Eigen::Dynamic, 1>::Constant (1, x)) (0, 0)
#else
Math::betaincreg (0.5 * dof, 0.5 * default_type(rank), x)
#endif
);
}
default_type F2z_lower (const default_type oneoverF, const size_t rank, const default_type dof)
{
assert (oneoverF >= 1.0);
const default_type x = (default_type(rank)/oneoverF) / (default_type(rank)/oneoverF + dof);
return Math::sqrt2 * Math::erfinv (2.0 *
#ifdef MRTRIX_HAVE_EIGEN_UNSUPPORTED_SPECIAL_FUNCTIONS
Math::betaincreg (Eigen::Array<default_type, Eigen::Dynamic, 1>::Constant (1, 0.5 * default_type(rank)),
Eigen::Array<default_type, Eigen::Dynamic, 1>::Constant (1, 0.5 * dof),
Eigen::Array<default_type, Eigen::Dynamic, 1>::Constant (1, x)) (0, 0)
#else
Math::betaincreg (0.5 * default_type(rank), 0.5 * dof, x)
#endif
- 1.0);
}
}
default_type t2z (const default_type stat, const default_type dof)
{
const default_type x = dof / (Math::pow2 (stat) + dof);
return Math::sqrt2 * Math::erfcinv (
#ifdef MRTRIX_HAVE_EIGEN_UNSUPPORTED_SPECIAL_FUNCTIONS
Math::betaincreg (Eigen::Array<default_type, Eigen::Dynamic, 1>::Constant (1, 0.5 * dof),
Eigen::Array<default_type, Eigen::Dynamic, 1>::Constant (1, 0.5),
Eigen::Array<default_type, Eigen::Dynamic, 1>::Constant (1, x)) (0, 0)
#else
Math::betaincreg (0.5 * dof, 0.5, x)
#endif
) * (stat < 0.0 ? -1.0 : 1.0);
}
default_type F2z (const default_type F, const size_t rank, const default_type dof)
{
if (F >= 1.0)
return F2z_upper (F, rank, dof);
else
return F2z_lower (1.0/F, rank, dof);
}
default_type Zstatistic::t2z (const default_type t, const size_t dof)
{
auto it = t2z_data.find (dof);
if (it == t2z_data.end()) {
std::lock_guard<std::mutex> lock (mutex);
// Need to check again for presence of lookup table
// now that we have the lock
it = t2z_data.find (dof);
if (it == t2z_data.end())
it = t2z_data.emplace (dof, Lookup_t2z (dof)).first;
}
return (it->second) (t);
}
default_type Zstatistic::F2z (const default_type F, const size_t rank, const size_t dof)
{
const auto pair = std::make_pair (rank, dof);
auto it = F2z_data.find (pair);
if (it == F2z_data.end()) {
std::lock_guard<std::mutex> lock (mutex);
// Need to check again for presence of lookup table
// now that we have the lock
it = F2z_data.find (pair);
if (it == F2z_data.end())
it = F2z_data.emplace (pair, Lookup_F2z (rank, dof)).first;
}
return (it->second) (F);
}
default_type Zstatistic::v2z (const default_type v, const default_type dof)
{
return Math::t2z (v, dof);
}
default_type Zstatistic::G2z (const default_type G, const size_t rank, const default_type dof)
{
return Math::F2z (G, rank, dof);
}
// Function that will determine an interpolated value using
// the lookup table if the value lies within the pre-calculated
// range, or perform an explicit calculation if that is not
// the case
default_type Zstatistic::LookupBase::interp (const default_type stat,
const default_type offset,
const default_type scale,
const array_type& data,
std::function<default_type(default_type)> func) const
{
const default_type index_float = (stat - offset) * scale;
if (index_float >= 1.0 && index_float < data.size()-2) {
const ssize_t index_int (ssize_t (std::floor (index_float)));
const default_type mu (index_float - default_type (index_int));
Math::Hermite<default_type> hermite (0.0);
hermite.set (mu);
return hermite.value (data[index_int-1],
data[index_int],
data[index_int+1],
data[index_int+2]);
}
return func (stat);
}
// Build table mapping t-statistic to z-statistic
// Support inputs from -10.0 to +10.0 in 0.001 increments
// (extending range by one value at each end to enable hermite interpolation):
// - Input of -10.001 maps to index 0
// - Input of -10.000 maps to index 1
// - Input of 0.000 maps to index 10001
// - Input of +10.000 maps to index 20001
// - Input of +10.001 maps to index 20002
constexpr default_type t2z_max = 10.0;
constexpr default_type t2z_step = 0.001;
// Do not permit this division to be a non-integer value!
constexpr ssize_t t2z_halfdomain = ssize_t(t2z_max / t2z_step);
Zstatistic::Lookup_t2z::Lookup_t2z (const size_t dof) :
dof (dof),
offset (-t2z_max - t2z_step),
scale (1.0/t2z_step)
{
auto t2x = [&] (const default_type t) { return dof / (Math::pow2 (t) + dof); };
// Extra point at either end for interpolation, plus the shared point at t=0
#ifdef NDEBUG
array_type x (3 + 2*t2z_halfdomain);
#else
array_type x (array_type::Constant (3 + 2*t2z_halfdomain, NaN));
#endif
x[0] = t2x (-t2z_max - t2z_step);
for (ssize_t i = -t2z_halfdomain; i <= t2z_halfdomain; ++i) {
const default_type t = t2z_step * i;
x[1+i+t2z_halfdomain] = t2x (t);
}
x[x.size()-1] = t2x (t2z_max + t2z_step);
assert (x.allFinite());
// Bypasses p:
// essentially calculates 2q = 2(1-p) using the regularised incomplete beta function,
// then converts straight to Z-score using the inverse complementary error function
#ifdef MRTRIX_HAVE_EIGEN_UNSUPPORTED_SPECIAL_FUNCTIONS
data = Math::sqrt2 * (Math::betaincreg (array_type::Constant (x.size(), 0.5 * dof),
array_type::Constant (x.size(), 0.5),
x.array()
).unaryExpr (&Math::erfcinv));
#else
data.resize (x.size());
for (ssize_t i = 0; i != x.size(); ++i)
data[i] = Math::sqrt2 * Math::erfcinv (Math::betaincreg (0.5 * dof, 0.5, x[i]));
#endif
// Need to negate Z-scores for which t-statistic is negative
data.topRows(1+t2z_halfdomain) *= -1.0;
}
default_type Zstatistic::Lookup_t2z::operator() (const default_type t) const
{
auto func = [&] (const default_type in) { return Math::t2z (in, dof); };
return interp (t, offset, scale, data, func);
}
// Build table mapping F-statistic to z-statistic
// - For statistics > 1.0, use a linear lookup table
// - Value 1.0 maps to index 0
// - Value of 100.0 maps to index 9900
// - For statistics < 1.0, take reciprocal of the value, and then
// refer that to a second lookup table
// (reciprocal should be computationally fastest of inverse transformation relationships)
// - Value of 1.0 maps to index 0
// - Value of 100.0 (input value 0.01) maps to index 9900
// Extend ranges by 1 at either end to enable Hermite interpolation:
// - Upper:
// - Value 0.99 maps to index 0
// - Value 1.00 maps to index 1
// - Value 100.00 maps to index 9901
// - Value 100.01 maps to index 9902
// - Lower:
// - Value (1.00/0.99) maps to index 0
// - Value 1.00 maps to index 1
// - Value 0.01 maps to index 9901
// - Value (1.0/100.01) maps to index 9902
constexpr default_type F2z_max = 100.0;
constexpr default_type F2z_step = 0.01;
// Do not permit this division to be a non-integer value!
constexpr ssize_t F2z_halfdomain = size_t((F2z_max - 1.0) / F2z_step);
Zstatistic::Lookup_F2z::Lookup_F2z (const size_t rank, const size_t dof) :
rank (rank),
dof (dof),
offset_upper (1.0 - F2z_step),
scale_upper (1.0 / F2z_step),
offset_lower (1.0 - F2z_step),
scale_lower (1.0 / F2z_step)
{
// F-distribution constants: d_one = rank; d_two = dof;
// HOWEVER: p_{F(v,w)} (x) = 1.0 - p_{F(w,v)} (1.0/x)
// We want to compute the latter in order to dodge numerical precision issues
const array_type d_one (array_type::Constant (3 + F2z_halfdomain, rank));
const array_type d_two (array_type::Constant (d_one.size(), dof));
#ifdef NDEBUG
array_type F (d_one.size());
array_type oneoverF (d_one.size());
#else
array_type F (array_type::Constant (d_one.size(), NaN));
array_type oneoverF (array_type::Constant (d_one.size(), NaN));
#endif
F[0] = 1.0 - F2z_step;
oneoverF[0] = 1.0 / (1.0 - F2z_step);
for (ssize_t i = 0; i <= F2z_halfdomain; ++i) {
F[i+1] = 1.0 + (default_type(i) * F2z_step);
oneoverF[i+1] = 1.0 / F[i+1];
}
F[F.size()-1] = F2z_max + F2z_step;
oneoverF[oneoverF.size()-1] = 1.0 / F[F.size()-1];
assert (F.allFinite());
assert (oneoverF.allFinite());
const array_type x_upper ((d_two*oneoverF) / (d_two*oneoverF + d_one));
// Bypasses p:
// calculates q = 1-p using the regularised incomplete beta function,
// then converts straight to Z-score using the inverse complementary error function
#ifdef MRTRIX_HAVE_EIGEN_UNSUPPORTED_SPECIAL_FUNCTIONS
data_upper = Math::sqrt2 * (2.0 * Math::betaincreg (0.5 * d_two,
0.5 * d_one,
x_upper)
).unaryExpr (&Math::erfcinv);
#else
data_upper.resize (x_upper.size());
for (ssize_t i = 0; i != x_upper.size(); ++i)
data_upper[i] = Math::sqrt2 * Math::erfcinv (2.0 * Math::betaincreg (0.5 * dof, 0.5 * rank, x_upper[i]));
#endif
// Construct lookup table for F <= 1.0
// This should involve avoiding the symmetry relationship gymnastics used in the first case
// - Betaincreg (0.5*d1, 0.5*dof, x) should give p
const array_type x_lower ((d_one*oneoverF) / (d_one*oneoverF + d_two));
#ifdef MRTRIX_HAVE_EIGEN_UNSUPPORTED_SPECIAL_FUNCTIONS
data_lower = Math::sqrt2 * (2.0 * Math::betaincreg (0.5 * d_one,
0.5 * d_two,
x_lower) - 1.0
).unaryExpr (&Math::erfinv);
#else
data_lower.resize (x_lower.size());
for (ssize_t i = 0; i != x_lower.size(); ++i)
data_lower[i] = Math::sqrt2 * Math::erfinv (2.0 * Math::betaincreg (0.5 * rank, 0.5 * dof, x_lower[i]) - 1.0);
#endif
}
default_type Zstatistic::Lookup_F2z::operator() (const default_type F) const
{
auto func_upper = [&] (const default_type in) { return F2z_upper (in, rank, default_type(dof)); };
auto func_lower = [&] (const default_type in) { return F2z_lower (in, rank, default_type(dof)); };
if (F >= 1.0)
return interp (F, offset_upper, scale_upper, data_upper, func_upper);
else
return interp (1.0/F, offset_lower, scale_lower, data_lower, func_lower);
}
}
}
|