1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
|
/* Copyright (c) 2008-2022 the MRtrix3 contributors.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* Covered Software is provided under this License on an "as is"
* basis, without warranty of any kind, either expressed, implied, or
* statutory, including, without limitation, warranties that the
* Covered Software is free of defects, merchantable, fit for a
* particular purpose or non-infringing.
* See the Mozilla Public License v. 2.0 for more details.
*
* For more details, see http://www.mrtrix.org/.
*/
#ifndef __mrtrix_thread_queue_h__
#define __mrtrix_thread_queue_h__
#include <stack>
#include <condition_variable>
#include "exception.h"
#include "memory.h"
#include "thread.h"
#define MRTRIX_QUEUE_DEFAULT_CAPACITY 128
#define MRTRIX_QUEUE_DEFAULT_BATCH_SIZE 128
namespace MR
{
namespace Thread
{
//* \cond skip
namespace {
// to get multi/single job/functor seamlessly:
template <class X>
class __job { NOMEMALIGN
public:
using type = typename std::remove_reference<X>::type;
using member_type = typename std::remove_reference<X>::type&;
static X& functor (X& job) { return job; }
template <class SingleFunctor>
static SingleFunctor& get (X& /*f*/, SingleFunctor& functor) {
return functor;
}
};
template <class X>
class __job <__Multi<X>> { NOMEMALIGN
public:
using type = typename std::remove_reference<X>::type;
using member_type = typename std::remove_reference<X>::type;
static X& functor (__Multi<X>& job) { return job.functor; }
template <class SingleFunctor>
static __Multi<SingleFunctor> get (__Multi<X>& f, SingleFunctor& functor) {
return __Multi<SingleFunctor> (functor, f.num);
}
};
}
//! \endcond
/** \addtogroup thread_classes
* @{ */
/** \defgroup thread_queue Thread-safe queue
* \brief Functionality for thread-safe parallel processing of queued items
*
* These functions and classes provide functionality for one or more \e
* source threads to feed items into a first-in first-out queue, and one or
* more \e sink threads to consume items. This pipeline can also extend
* over two queues, with one or more \e pipe threads consuming items of one
* type from the first queue, and feeding items of another type onto the
* second queue.
*
* As a graphical representation of the pipeline, the following workflows
* can be achieved:
*
* \code
* [source] \ / [sink]
* [source] -- queue<item> -- [sink]
* [source] / \ [sink]
* .. ..
* N_source N_sink
* \endcode
*
* or for a deeper pipeline:
*
* \code
* [source] \ / [pipe] \ / [sink]
* [source] -- queue<item1> -- [pipe] -- queue<item2> -- [sink]
* [source] / \ [pipe] / \ [sink]
* .. .. ..
* N_source N_pipe N_sink
* \endcode
*
* By default, items are push to and pulled from the queue one by one. In
* situations where the amount of processing per item is small, items can
* be sent in batches to reduce the overhead of thread management (mutex
* locking/unlocking, etc).
*
* The simplest way to use this functionality is via the
* Thread::run_queue() and associated Thread::multi() and Thread::batch()
* functions. In complex situations, it may be necessary to use the
* Thread::Queue class directly, although that should very rarely (if ever)
* be needed.
*
* \sa Thread::run_queue()
* \sa Thread::Queue
*
* @{ */
//! A first-in first-out thread-safe item queue
/*! This class implements a thread-safe means of pushing data items into a
* queue, so that they can each be processed in one or more separate
* threads.
*
* \note In practice, it is almost always simpler to use the convenience
* function Thread::run_queue(). You should never need to use the
* Thread::Queue directly unless you have a very unusual situation.
*
* \section thread_queue_usage Usage overview
*
* Thread::Queue has somewhat unusual usage, which consists of the following
* steps:
* - Create an instance of a Thread::Queue
* - Create one or more instances of the corresponding
* Thread::Queue::Writer class, each constructed with a reference to the
* queue. Each of these instances will automatically notify the queue that
* its corresponding thread will be writing to the queue.
* - Create one or more instances of the corresponding
* Thread::Queue::Reader class, each constructed with a reference to the
* queue. Each of these instances will automatically notify the queue that
* its corresponding thread will be reading from the queue.
* - Launch all threads, one per instance of Thread::Queue::Writer or
* Thread::Queue::Reader. Note that one of these threads can be the
* current thread - simply invoke the respective functor's execute()
* method directly once all other threads have been launched.
* - Within the execute() method of each thread with a
* Thread::Queue::Writer:
* - create an instance of Thread::Queue::Writer::Item, constructed from
* the corresponding Thread::Queue::Writer;
* - perform processing in a loop:
* - prepare the item using pointer semantics (i.e. *item or
* item->method());
* - use the write() method of this class to write to the queue;
* - break out of loop if write() returns \c false.
* - when the execute() method returns, the destructor of the
* Thread::Queue::Writer::Item class will notify the queue that its
* thread has finished writing to the queue.
* - Within the execute() method of each thread with a
* Thread::Queue::Reader:
* - create an instance of Thread::Queue::Reader::Item, constructed from
* the corresponding Thread::Queue::Reader;
* - perform processing in a loop:
* - use the read() method of this class to read the next item from the
* queue;
* - break out of the loop if read() returns \c false;
* - process the item using pointer semantics (i.e. *item or
* item->method()).
* - when the execute() method returns, the destructor of the
* Thread::Queue::Reader::Item class will notify the queue that its
* thread has finished reading from the queue.
* - If all reader threads have returned, the queue will notify all writer
* threads that processing should stop, by returning \c false from the next
* write attempt.
* - If all writer threads have returned and no items remain in the queue,
* the queue will notify all reader threads that processing should stop, by
* returning \c false from the next read attempt.
*
* The additional member classes are designed to be used in conjunction
* with the MRtrix multi-threading interface. In this system, each thread
* corresponds to an instance of a functor class, and its execute() method
* is the function that will be run within the thread (see Thread::Exec for
* details). For this reason:
* - The Thread::Queue instance is designed to be created before any of the
* threads.
* - The Thread::Queue::Writer and Thread::Queue::Reader classes are
* designed to be used as members of each functor, so that each functor
* must construct these classes from a reference to the queue within
* their own constructor. This ensures each thread registers their
* intention to read or write with the queue \e before their thread is
* launched.
* - The Thread::Queue::Writer::Item and Thread::Queue::Reader::Item
* classes are designed to be instantiated within each functor's
* execute() method. They must be constructed from a reference to a
* Thread::Queue::Writer or Thread::Queue::Reader respectively, ensuring
* no reads or write can take place without having registered with the
* queue. Their destructors will also unregister from the queue, ensuring
* that each thread unregisters as soon as the execute() method returns,
* and hence \e before the thread exits.
*
* The Queue class performs all memory management for the items in the
* queue. For this reason, the items are accessed via the Writer::Item &
* Reader::Item classes. This allows items to be recycled once they have
* been processed, reducing overheads associated with memory
* allocation/deallocation.
*
* \note It is important that all instances of Thread::Queue::Writer and
* Thread::Queue::Reader are created \e before any of the threads are
* launched, to avoid any race conditions at startup.
*
* The use of Thread::Queue is best illustrated with an example:
* \code
* // the type of objects that will be sent through the queue:
* class Item {
* public:
* ...
* // data members
* ...
* };
*
*
* // The use a typedef is recommended to help with readability (and typing!):
* typedef Thread::Queue<Item> MyQueue;
*
*
* // this class will write to the queue:
* class Sender {
* public:
* // construct the 'writer' member in the constructor:
* Sender (MyQueue& queue) : writer (queue) { }
*
* void execute () {
* // use a local instance of Thread::Queue<Item>::Writer::Item to write to the queue:
* MyQueue::Writer::Item item (writer);
* while (need_more_items()) {
* ...
* // prepare item
* *item = something();
* item->set (something_else);
* ...
* if (!item.write()) break; // break if write() returns false
* }
* }
*
* private:
* MyQueue::Writer writer;
* };
*
*
* // this class will read from the queue:
* class Receiver {
* public:
* // construct the 'reader' member in the constructor:
* Receiver (MyQueue& queue) : reader (queue) { }
*
* void execute () {
* // use a local instance of Thread::Queue<Item>::Reader::Item to read from the queue:
* MyQueue::Reader::Item item (reader);
* while ((item.read())) { // break when read() returns false
* ...
* // process item
* do_something (*item);
* if (item->status()) report_error();
* ...
* if (enough_items()) return;
* }
* }
*
* private:
* MyQueue::Reader reader;
* };
*
*
* // this is where the queue and threads are created:
* void my_function () {
* // create an instance of the queue:
* MyQueue queue;
*
* // create all functors from a reference to the queue:
* Sender sender (queue);
* Receiver receiver (queue);
*
* // once all functors are created, launch their corresponding threads:
* Thread::Exec sender_thread (sender);
* Thread::Exec receiver_thread (receiver);
* }
* \endcode
*
* \section thread_queue_rationale Rationale for the Writer, Reader, and Item member classes
*
* The motivation for the use of additional member classes to perform the
* actual process of writing and reading to and from the queue is related
* to the need to keep track of the number of processes currently using the
* queue. This is essential to ensure that threads are notified when the
* queue is closed. This happens either when all readers have finished
* reading; or when all writers have finished writing and no items are left
* in the queue. This is complicated by the need to ensure that the various
* operations are called in the right order to avoid deadlocks.
*
* There are essentially 4 operations that need to take place:
* - registering an intention to read/write from/to the queue
* - launching the corresponding thread
* - unregistering from the queue
* - terminating the thread
*
* For proper multi-threaded operations, these operations must take place
* in the order above. Moreover, each operation must be completed for
* all users of the queue before any of them can perform the next
* operation. The use of additional member classes ensures that threads
* have to register their intention to read or write from the queue, and
* that they unregister from the queue once their processing is done.
*
* While this could have been achieved simply with the appropriate member
* functions (i.e. register(), unregister(), %read() & %write() methods in
* the main Queue class), this places a huge burden on the developer to get
* it right. Using these member functions reduces the chance of coding
* errors, and in fact reduces the total amount of code that needs to be
* written to use the Queue in a safe manner.
*
* The Item classes additionally simplify the memory management of the
* items in the queue, by preventing direct access to the underlying
* pointers, and ensuring the Queue itself is responsible for all
* allocation and deallocation of items as needed.
*
* \sa Thread::run_queue()
*/
template <class T> class Queue { NOMEMALIGN
public:
//! Construct a Queue of items of type \c T
/*! \param description a string identifying the queue for degugging purposes
* \param buffer_size the maximum number of items that can be pushed onto the queue before
* blocking. If a thread attempts to push more data onto the queue when the
* queue already contains this number of items, the thread will block until
* at least one item has been popped. By default, the buffer size is
* MRTRIX_QUEUE_DEFAULT_CAPACITY items.
*/
Queue (const std::string& description = "unnamed", size_t buffer_size = MRTRIX_QUEUE_DEFAULT_CAPACITY) :
buffer (new T* [buffer_size]),
front (buffer),
back (buffer),
capacity (buffer_size),
writer_count (0),
reader_count (0),
name (description) {
assert (capacity > 0);
}
Queue (const Queue&) = delete;
Queue (Queue&&) = default;
Queue& operator= (const Queue&) = delete;
Queue& operator= (Queue&&) = default;
~Queue () {
delete [] buffer;
}
//! This class is used to register a writer with the queue
/*! Items cannot be written directly onto a Thread::Queue queue. An
* object of this class must first be instanciated to notify the queue
* that a section of code will be writing to the queue. The actual
* process of writing items to the queue is done via the Writer::Item
* class.
*
* \sa Thread::Queue for more detailed information and examples.
* \sa Thread::run_queue() for a much more user-friendly way of setting
* up a queue. */
class Writer { NOMEMALIGN
public:
//! Register a Writer object with the queue
/*! The Writer object will register itself with the queue as a
* writer. */
Writer (Queue<T>& queue) : Q (queue) {
Q.register_writer();
}
Writer (const Writer& W) : Q (W.Q) {
Q.register_writer();
}
//! This class is used to write items to the queue
/*! Items cannot be written directly onto a Thread::Queue queue. An
* object of this class must be instantiated and used to write to the
* queue.
*
* \sa Thread::Queue for more detailed information and examples.
* \sa Thread::run_queue() for a much more user-friendly way of setting
* up a queue. */
class Item { NOMEMALIGN
public:
//! Construct a Writer::Item object
/*! The Writer::Item object can only be instantiated from a
* Writer object, ensuring that the corresponding section of code
* has already registered as a writer with the queue. The
* destructor for this object will unregister from the queue.
*
* \note There should only be one Writer::Item object per Writer.
* */
Item (const Writer& writer) : Q (writer.Q), p (Q.get_item()) { }
//! Unregister the parent Writer from the queue
~Item () {
Q.unregister_writer();
}
using item_type = T;
//! Push the item onto the queue
FORCE_INLINE bool write () {
return Q.push (p);
}
FORCE_INLINE T& operator*() const throw () {
return *p;
}
FORCE_INLINE T* operator->() const throw () {
return p;
}
private:
Queue<T>& Q;
T* p;
};
Item placeholder () const { return Item (*this); }
private:
Queue<T>& Q;
};
//! This class is used to register a reader with the queue
/*! Items cannot be read directly from a Thread::Queue queue. An
* object of this class must be instanciated to notify the queue
* that a section of code will be reading from the queue. The actual
* process of reading items from the queue is done via the Reader::Item
* class.
*
* \sa Thread::Queue for more detailed information and examples.
* \sa Thread::run_queue() for a much more user-friendly way of setting
* up a queue. */
class Reader { NOMEMALIGN
public:
//! Register a Reader object with the queue.
/*! The Reader object will register itself with the queue as a
* reader. */
Reader (Queue<T>& queue) : Q (queue) {
Q.register_reader();
}
Reader (const Reader& reader) : Q (reader.Q) {
Q.register_reader();
}
//! This class is used to read items from the queue
/*! Items cannot be read directly from a Thread::Queue queue. An
* object of this class must be instanciated and used to read from the
* queue.
*
* \sa Thread::Queue for more detailed information and examples.
* \sa Thread::run_queue() for a much more user-friendly way of setting
* up a queue. */
class Item { NOMEMALIGN
public:
//! Construct a Reader::Item object
/*! The Reader::Item object can only be instantiated from a
* Reader object, ensuring that the corresponding section of code
* has already registered as a reader with the queue. The
* destructor for this object will unregister from the queue.
*
* \note There should only be one Reader::Item object per
* Reader. */
Item (const Reader& reader) : Q (reader.Q), p (nullptr) { }
//! Unregister the parent Reader from the queue
~Item () {
Q.unregister_reader();
}
using item_type = T;
//! Get next item from the queue
FORCE_INLINE bool read () {
return Q.pop (p);
}
FORCE_INLINE T* stash () throw () {
T* item = p;
p = nullptr;
return item;
}
FORCE_INLINE void recycle (T* item) const throw () {
Q.recycle (item);
}
FORCE_INLINE T& operator*() const throw () {
return *p;
}
FORCE_INLINE T* operator->() const throw () {
return p;
}
FORCE_INLINE bool operator! () const throw () {
return !p;
}
private:
Queue<T>& Q;
T* p;
};
Item placeholder () const { return Item (*this); }
private:
Queue<T>& Q;
};
//! Print out a status report for debugging purposes
void status () {
std::lock_guard<std::mutex> lock (mutex);
std::cerr << "Thread::Queue \"" + name + "\": "
<< writer_count << " writer" << (writer_count > 1 ? "s" : "") << ", "
<< reader_count << " reader" << (reader_count > 1 ? "s" : "") << ", items waiting: " << size() << "\n";
}
private:
std::mutex mutex;
std::condition_variable more_data, more_space;
T** buffer;
T** front;
T** back;
size_t capacity;
size_t writer_count, reader_count;
std::stack<T*,vector<T*> > item_stack;
vector<std::unique_ptr<T>> items;
std::string name;
void register_writer () {
std::lock_guard<std::mutex> lock (mutex);
++writer_count;
}
void unregister_writer () {
std::lock_guard<std::mutex> lock (mutex);
assert (writer_count);
--writer_count;
if (!writer_count) {
DEBUG ("no writers left on queue \"" + name + "\"");
more_data.notify_all();
}
}
void register_reader () {
std::lock_guard<std::mutex> lock (mutex);
++reader_count;
}
void unregister_reader () {
std::lock_guard<std::mutex> lock (mutex);
assert (reader_count);
--reader_count;
if (!reader_count) {
DEBUG ("no readers left on queue \"" + name + "\"");
more_space.notify_all();
}
}
FORCE_INLINE bool empty () const {
return (front == back);
}
FORCE_INLINE bool full () const {
return (inc (back) == front);
}
FORCE_INLINE size_t size () const {
return ( (back < front ? back+capacity : back) - front);
}
FORCE_INLINE T* get_item () {
std::lock_guard<std::mutex> lock (mutex);
T* item (new T);
items.push_back (std::unique_ptr<T> (item));
return item;
}
FORCE_INLINE bool push (T*& item) {
std::unique_lock<std::mutex> lock (mutex);
more_space.wait (lock, [this]{ return !(full() && reader_count); });
if (!reader_count) return false;
*back = item;
back = inc (back);
if (item_stack.empty()) {
item = new T;
items.push_back (std::unique_ptr<T> (item));
}
else {
item = item_stack.top();
item_stack.pop();
}
more_data.notify_one();
return true;
}
FORCE_INLINE bool pop (T*& item) {
std::unique_lock<std::mutex> lock (mutex);
if (item)
item_stack.push (item);
item = nullptr;
more_data.wait (lock, [this]{ return !(empty() && writer_count); });
if (empty() && !writer_count)
return false;
item = *front;
front = inc (front);
more_space.notify_one();
return true;
}
FORCE_INLINE void recycle (T*& item) {
std::unique_lock<std::mutex> lock (mutex);
if (item)
item_stack.push (item);
}
FORCE_INLINE T** inc (T** p) const {
++p;
if (p >= buffer + capacity) p = buffer;
return p;
}
};
//* \cond skip
namespace {
/********************************************************************
* convenience Functor classes for use in Thread::run_queue()
********************************************************************/
template <class Item>
struct __Batch { NOMEMALIGN
__Batch (size_t number) : num (number) { }
size_t num;
};
template <class Item> struct __batch_size { NOMEMALIGN
__batch_size (const Item&) { }
operator size_t () const { return 0; }
};
template <class Item> struct __batch_size <__Batch<Item>> { NOMEMALIGN
__batch_size (const __Batch<Item>& item) : n (item.num) { }
operator size_t () const { return n; }
const size_t n;
};
/*! wrapper classes to extend simple functors designed for use with
* Thread::run_queue with functionality needed for use with Thread::Queue */
template <class Item> struct Type { NOMEMALIGN
using item = Item;
using queue = Queue<Item>;
using reader = typename queue::Reader;
using writer = typename queue::Writer;
using read_item = typename reader::Item;
using write_item = typename writer::Item;
};
template <class Item> struct Type<__Batch<Item>> { NOMEMALIGN
using item = Item;
using queue = Queue<vector<Item>>;
using reader = typename queue::Reader;
using writer = typename queue::Writer;
using read_item = typename reader::Item;
using write_item = typename writer::Item;
};
template <class Item>
struct FetchItem { NOMEMALIGN
FetchItem (typename Type<Item>::reader& item) : in (item.placeholder()) { }
bool read () { return in.read(); }
Item& value () { return (*in); }
typename Type<Item>::read_item in;
};
template <class Item>
struct FetchItem<__Batch<Item>> { NOMEMALIGN
FetchItem (typename Type<__Batch<Item>>::reader& in) : in (in.placeholder()), n (0) { }
bool read () {
if (!in)
return in.read();
++n;
if (n >= in->size()) {
if (!in.read())
return false;
n = 0;
}
return true;
}
Item& value () { return (*in)[n]; }
typename Type<__Batch<Item>>::read_item in;
size_t n;
};
template <class Item>
struct StoreItem { NOMEMALIGN
StoreItem (size_t, typename Type<Item>::writer& item) : out (item.placeholder()) { }
bool write () { return out.write(); }
Item& value () { return (*out); }
bool flush () { return true; }
typename Type<Item>::write_item out;
};
template <class Item>
struct StoreItem<__Batch<Item>> { NOMEMALIGN
StoreItem (size_t batch_size, typename Type<__Batch<Item>>::writer& item) :
out (item.placeholder()), batch_size (batch_size), n(0) { out->resize (batch_size); }
bool write () {
++n;
if (n >= batch_size) {
n = 0;
if (!out.write())
return false;
out->resize (batch_size);
}
return true;
}
Item& value () { return (*out)[n]; }
void flush () { if (n) { out->resize (n); out.write(); } }
typename Type<__Batch<Item>>::write_item out;
const size_t batch_size;
size_t n;
};
template <class Item, class Functor>
struct __Source { MEMALIGN(__Source<Item,Functor>)
using item_t = typename Type<Item>::item;
using queue_t = typename Type<Item>::queue;
using writer_t = typename Type<Item>::writer;
using functor_t = typename __job<Functor>::member_type;
writer_t writer;
functor_t func;
size_t batch_size;
__Source (queue_t& queue, Functor& functor, const Item& item) :
writer (queue),
func (__job<Functor>::functor (functor)),
batch_size (__batch_size<Item> (item)) { }
void execute () {
auto out = StoreItem<Item> (batch_size, writer);
do {
if (!func (out.value()))
break;
} while (out.write());
out.flush();
}
};
template <class Item1, class Functor, class Item2>
struct __Pipe { MEMALIGN(__Pipe<Item1,Functor,Item2>)
using item1_t = typename Type<Item1>::item;
using item2_t = typename Type<Item2>::item;
using queue1_t = typename Type<Item1>::queue;
using queue2_t = typename Type<Item2>::queue;
using reader_t = typename Type<Item1>::reader;
using writer_t = typename Type<Item2>::writer;
using functor_t = typename __job<Functor>::member_type;
reader_t reader;
writer_t writer;
functor_t func;
const size_t batch_size;
__Pipe (queue1_t& queue_in, Functor& functor, queue2_t& queue_out, const Item2& item2) :
reader (queue_in),
writer (queue_out),
func (__job<Functor>::functor (functor)),
batch_size (__batch_size<Item2> (item2)) { }
void execute () {
auto in = FetchItem<Item1> (reader);
auto out = StoreItem<Item2> (batch_size, writer);
while (in.read()) {
if (func (in.value(), out.value())) {
if (!out.write())
break;
}
}
out.flush();
}
};
template <class Item, class Functor>
struct __Sink { MEMALIGN(__Sink<Item,Functor>)
using item_t = typename Type<Item>::item;
using queue_t = typename Type<Item>::queue;
using reader_t = typename Type<Item>::reader;
using functor_t = typename __job<Functor>::member_type;
reader_t reader;
functor_t func;
__Sink (queue_t& queue, Functor& functor) :
reader (queue),
func (__job<Functor>::functor (functor)) { }
void execute () {
auto in = FetchItem<Item> (reader);
while (in.read()) {
if (!func (in.value()))
return;
}
}
};
}
//! \endcond
//! used to request batched processing of items
/*! This function is used in combination with Thread::run_queue to request
* that the items \a object be processed in batches of \a number items
* (defaults to MRTRIX_QUEUE_DEFAULT_BATCH_SIZE).
* \sa Thread::run_queue() */
template <class Item>
inline __Batch<Item> batch (const Item&, size_t number = MRTRIX_QUEUE_DEFAULT_BATCH_SIZE)
{
return __Batch<Item> (number);
}
//! convenience function to set up and run a 2-stage multi-threaded pipeline.
/*! This function (and its 3-stage equivalent
* Thread::run_queue(const Source&, const Item1&, const Pipe&, const Item2&, const Sink&, size_t))
* simplify the process of setting up a multi-threaded processing chain
* that should meet most users' needs.
*
* The arguments to this function correspond to an instance of the Source,
* the Sink, and optionally the Pipe functors, in addition to an instance
* of the Items to be passed through each stage of the pipeline - these are
* provided purely to specify the type of object to pass through the
* queue(s).
*
* \section thread_run_queue_functors Functors
*
* The 3 types of functors each have a specific purpose, and corresponding
* requirements as described below:
*
* \par Source: the input functor
* The Source class must at least provide the method:
* \code
* bool operator() (Item& item);
* \endcode
* This function prepares the \a item passed to it, and should return \c
* true if further items need to be processed, or \c false to signal that
* no further items are to be sent through the queue (at which point the
* corresponding thread(s) will exit).
*
* \par Sink: the output functor
* The Sink class must at least provide the method:
* \code
* bool operator() (const Item& item);
* \endcode
* This function processes the \a item passed to it, and should return \c
* true when ready to process further items, or \c false to signal the end
* of processing (at which point the corresponding thread(s) will exit).
*
* \par Pipe: the processing functor (for 3-stage pipeline only)
* The Pipe class must at least provide the method:
* \code
* bool operator() (const Item1& item_in, Item2& item_out);
* \endcode
* This function processes the \a item_in passed to it, and prepares
* \a item_out for the next stage of the pipeline. It should return \c
* true if the item processed is to be sent to the next stage in the
* pipeline, and false if it is to be discarded - note that this is
* very different from the other functors, where returning false signals
* end of processing.
*
* \section thread_run_queue_example Simple example
*
* This is a simple demo application that generates a linear sequence of
* numbers and sums them up:
*
* \code
* const size_t max_count;
*
* // the functor that will generate the items:
* class Source {
* public:
* Source () : count (0) { }
* bool operator() (size_t& item) {
* item = count++;
* return count < max_count; // stop when max_count is reached
* }
* };
*
* // the functor that will consume the items:
* class Sink {
* public:
* Sink (size_t& total) :
* grand_total (grand_total),
* total (0) { }
* ~Sink () { // update grand_total in destructor
* grand_total += total;
* }
* bool operator() (const size_t& item) {
* total += item;
* return true;
* }
* protected:
* size_t& grand_total;
* };
*
* void run ()
* {
* size_t grand_total = 0;
* Source source;
* Sink sink (grand_total);
*
* // run a single-source => single-sink pipeline:
* Thread::run_queue (source, size_t(), sink);
* }
* \endcode
*
* \section thread_run_queue_multi Parallel execution of functors
*
* If a functor is to be run over multiple parallel threads of execution,
* it should be wrapped in a call to Thread::multi() before being passed
* to the Thread::run_queue() functions. The Thread::run_queue() functions
* will then create additional instances of the relevant functor using its
* copy constructor; care should therefore be taken to ensure that the
* functor's copy constructor behaves appropriately.
*
* For example, using the code above:
*
* \code
* ...
*
* void run ()
* {
* ...
*
* // run a single-source => multi-sink pipeline:
* Thread::run_queue (source, size_t(), Thread::multi (sink));
* }
* \endcode
*
* For the functor that is being multi-threaded, the default number of
* threads instantiated will depend on the "NumberOfThreads" entry in the
* MRtrix confugration file, or can be set at the command-line using the
* -nthreads option. This number can also be set as additional optional
* argument to Thread::multi().
*
* Note that any functor can be parallelised in this way. In the example
* above, the Source functor could have been wrapped in Thread::multi()
* instead if this was the behaviour required:
*
* \code
* ...
*
* void run ()
* {
* ...
*
* // run a multi-source => single-sink pipeline:
* Thread::run_queue (Thread::multi (source), size_t(), sink);
* }
* \endcode
*
*
* \section thread_run_queue_batch Batching items
*
* In cases where the amount of processing per item is small, the overhead
* of managing the concurrent access to the various queues from all the
* threads may become prohibitive (see \ref multithreading for details). In
* this case, it is a good idea to process the items in batches, which
* drastically reduces the number of accesses to the queue. This can be
* done by wrapping the items in a call to Thread::batch():
*
* \code
* ...
*
* void run ()
* {
* ...
*
* // run a single-source => multi-sink pipeline on batches of size_t items:
* Thread::run_queue (source, Thread::batch (size_t()), Thread::multi (sink));
* }
* \endcode
*
* By default, batches consist of MRTRIX_QUEUE_DEFAULT_BATCH_SIZE items
* (defined as 128). This can be set explicitly by providing the desired
* size as an additional argument to Thread::batch():
*
* \code
* ...
*
* void run ()
* {
* ...
*
* // run a single-source => multi-sink pipeline on batches of 1024 size_t items:
* Thread::run_queue (source, Thread::batch (size_t(), 1024), Thread::multi (sink));
* }
* \endcode
*
* Obviously, Thread::multi() and Thread::batch() can be used in any
* combination to perform the operations required.
*/
template <class Source, class Item, class Sink>
inline void run_queue (
Source&& source,
const Item& item,
Sink&& sink,
size_t capacity = MRTRIX_QUEUE_DEFAULT_CAPACITY)
{
if (threads_to_execute() == 0) {
typename Type<Item>::item item;
while (__job<Source>::functor (source) (item))
if (!__job<Sink>::functor (sink) (item))
return;
return;
}
typename Type<Item>::queue queue ("source->sink", capacity);
__Source<Item,Source> source_functor (queue, source, item);
__Sink<Item,Sink> sink_functor (queue, sink);
auto t1 = run (__job<Source>::get (source, source_functor), "source");
auto t2 = run (__job<Sink>::get (sink, sink_functor), "sink");
t1.wait();
t2.wait();
check_app_exit_code();
}
//! convenience functions to set up and run a 3-stage multi-threaded pipeline.
/*! This function extends the 2-stage Thread::run_queue() function to allow
* a 3-stage pipeline. For example, using the example from
* Thread::run_queue(), the following would add an additional stage to the
* pipeline to double the numbers as they come through:
*
* \code
*
* ...
*
* class Pipe {
* public:
* bool operator() (const size_t& item_in, size_t& item_out) {
* item_out = 2 * item_in;
* return true;
* }
* };
*
* ...
*
* void run ()
* {
* ...
*
* // run a single-source => multi-pipe => single-sink pipeline on batches of size_t items:
* Thread::run_queue (
* source,
* Thread::batch (size_t()),
* Thread::multi (pipe)
* Thread::batch (size_t()),
* sink);
* }
* \endcode
*
* Note that the return value of the Pipe functor's operator() method is
* used in this case to signal whether or not the corresponding item should
* be sent through to the next stage (true) or discarded (false). This
* differs from the Source & Sink functors where the corresponding return
* value is used to signal end of processing.
*
* As with the 2-stage pipeline, any functor can be executed in parallel
* (i.e. wrapped in Thread::multi()), Items do not need to be of the same
* type, and can be batched independently with any desired size.
* */
template <class Source, class Item1, class Pipe, class Item2, class Sink>
inline void run_queue (
Source&& source,
const Item1& item1,
Pipe&& pipe,
const Item2& item2,
Sink&& sink,
size_t capacity = MRTRIX_QUEUE_DEFAULT_CAPACITY)
{
if (threads_to_execute() == 0) {
typename Type<Item1>::item item1;
typename Type<Item2>::item item2;
while (__job<Source>::functor (source) (item1)) {
if (__job<Pipe>::functor (pipe) (item1, item2))
if (!__job<Sink>::functor (sink) (item2))
return;
}
return;
}
typename Type<Item1>::queue queue1 ("source->pipe", capacity);
typename Type<Item2>::queue queue2 ("pipe->sink", capacity);
__Source<Item1,Source> source_functor (queue1, source, item1);
__Pipe<Item1,Pipe,Item2> pipe_functor (queue1, pipe, queue2, item2);
__Sink<Item2,Sink> sink_functor (queue2, sink);
auto t1 = run (__job<Source>::get (source, source_functor), "source");
auto t2 = run (__job<Pipe>::get (pipe, pipe_functor), "pipe");
auto t3 = run (__job<Sink>::get (sink, sink_functor), "sink");
t1.wait();
t2.wait();
t3.wait();
check_app_exit_code();
}
//! convenience functions to set up and run a 4-stage multi-threaded pipeline.
/*! This function extends the 2-stage Thread::run_queue() function to allow
* a 3-stage pipeline. */
template <class Source, class Item1, class Pipe1, class Item2, class Pipe2, class Item3, class Sink>
inline void run_queue (
Source&& source,
const Item1& item1,
Pipe1&& pipe1,
const Item2& item2,
Pipe2&& pipe2,
const Item3& item3,
Sink&& sink,
size_t capacity = MRTRIX_QUEUE_DEFAULT_CAPACITY)
{
if (threads_to_execute() == 0) {
typename Type<Item1>::item item1;
typename Type<Item2>::item item2;
typename Type<Item3>::item item3;
while (__job<Source>::functor (source) (item1)) {
if (__job<Pipe1>::functor (pipe1) (item1, item2))
if (__job<Pipe2>::functor (pipe2) (item2, item3))
if (!__job<Sink>::functor (sink) (item3))
return;
}
return;
}
typename Type<Item1>::queue queue1 ("source->pipe", capacity);
typename Type<Item2>::queue queue2 ("pipe->pipe", capacity);
typename Type<Item3>::queue queue3 ("pipe->sink", capacity);
__Source<Item1,Source> source_functor (queue1, source, item1);
__Pipe<Item1,Pipe1,Item2> pipe1_functor (queue1, pipe1, queue2, item2);
__Pipe<Item2,Pipe2,Item3> pipe2_functor (queue2, pipe2, queue3, item3);
__Sink<Item3,Sink> sink_functor (queue3, sink);
auto t1 = run (__job<Source>::get (source, source_functor), "source");
auto t2 = run (__job<Pipe1>::get (pipe1, pipe1_functor), "pipe1");
auto t3 = run (__job<Pipe2>::get (pipe2, pipe2_functor), "pipe2");
auto t4 = run (__job<Sink>::get (sink, sink_functor), "sink");
t1.wait();
t2.wait();
t3.wait();
t4.wait();
check_app_exit_code();
}
/** @} */
/** @} */
}
}
#endif
|