File: dwi2response

package info (click to toggle)
mrtrix3 3.0.8-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 15,300 kB
  • sloc: cpp: 130,470; python: 9,603; sh: 597; makefile: 62; xml: 47
file content (128 lines) | stat: -rwxr-xr-x 6,403 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
#!/usr/bin/python3

# Copyright (c) 2008-2025 the MRtrix3 contributors.
#
# This Source Code Form is subject to the terms of the Mozilla Public
# License, v. 2.0. If a copy of the MPL was not distributed with this
# file, You can obtain one at http://mozilla.org/MPL/2.0/.
#
# Covered Software is provided under this License on an "as is"
# basis, without warranty of any kind, either expressed, implied, or
# statutory, including, without limitation, warranties that the
# Covered Software is free of defects, merchantable, fit for a
# particular purpose or non-infringing.
# See the Mozilla Public License v. 2.0 for more details.
#
# For more details, see http://www.mrtrix.org/.

# Script for estimating response functions for spherical deconvolution
# A number of different approaches are available within this script for performing response function estimation.



def usage(cmdline): #pylint: disable=unused-variable
  from mrtrix3 import algorithm, app #pylint: disable=no-name-in-module, import-outside-toplevel

  cmdline.set_author('Robert E. Smith (robert.smith@florey.edu.au) and Thijs Dhollander (thijs.dhollander@gmail.com)')
  cmdline.set_synopsis('Estimate response function(s) for spherical deconvolution')
  cmdline.add_description('dwi2response offers different algorithms for performing various types of response function estimation. The name of the algorithm must appear as the first argument on the command-line after \'dwi2response\'. The subsequent arguments and options depend on the particular algorithm being invoked.')
  cmdline.add_description('Each algorithm available has its own help page, including necessary references; e.g. to see the help page of the \'fa\' algorithm, type \'dwi2response fa\'.')

  # General options
  common_options = cmdline.add_argument_group('General dwi2response options')
  common_options.add_argument('-mask', help='Provide an initial mask for response voxel selection')
  common_options.add_argument('-voxels', help='Output an image showing the final voxel selection(s)')
  common_options.add_argument('-shells', help='The b-value(s) to use in response function estimation (comma-separated list in case of multiple b-values, b=0 must be included explicitly)')
  common_options.add_argument('-lmax', help='The maximum harmonic degree(s) for response function estimation (comma-separated list in case of multiple b-values)')
  app.add_dwgrad_import_options(cmdline)

  # Import the command-line settings for all algorithms found in the relevant directory
  algorithm.usage(cmdline)






def execute(): #pylint: disable=unused-variable
  from mrtrix3 import MRtrixError #pylint: disable=no-name-in-module, import-outside-toplevel
  from mrtrix3 import algorithm, app, image, path, run #pylint: disable=no-name-in-module, import-outside-toplevel

  # Find out which algorithm the user has requested
  alg = algorithm.get_module(app.ARGS.algorithm)

  # Check for prior existence of output files, and grab any input files, used by the particular algorithm
  if app.ARGS.voxels:
    app.check_output_path(app.ARGS.voxels)
  alg.check_output_paths()

  # Sanitise some inputs, and get ready for data import
  if app.ARGS.lmax:
    try:
      lmax = [ int(x) for x in app.ARGS.lmax.split(',') ]
      if any(lmax_value%2 for lmax_value in lmax):
        raise MRtrixError('Value of lmax must be even')
    except:
      raise MRtrixError('Parameter lmax must be a number')
    if alg.needs_single_shell() and not len(lmax) == 1:
      raise MRtrixError('Can only specify a single lmax value for single-shell algorithms')
  shells_option = ''
  if app.ARGS.shells:
    try:
      shells_values = [ int(round(float(x))) for x in app.ARGS.shells.split(',') ]
    except:
      raise MRtrixError('-shells option should provide a comma-separated list of b-values')
    if alg.needs_single_shell() and not len(shells_values) == 1:
      raise MRtrixError('Can only specify a single b-value shell for single-shell algorithms')
    shells_option = ' -shells ' + app.ARGS.shells
  singleshell_option = ''
  if alg.needs_single_shell():
    singleshell_option = ' -singleshell -no_bzero'

  grad_import_option = app.read_dwgrad_import_options()
  if not grad_import_option and 'dw_scheme' not in image.Header(path.from_user(app.ARGS.input, False)).keyval():
    raise MRtrixError('Script requires diffusion gradient table: either in image header, or using -grad / -fslgrad option')

  app.make_scratch_dir()

  # Get standard input data into the scratch directory
  if alg.needs_single_shell() or shells_option:
    app.console('Importing DWI data (' + path.from_user(app.ARGS.input) + ') and selecting b-values...')
    run.command('mrconvert ' + path.from_user(app.ARGS.input) + ' - -strides 0,0,0,1' + grad_import_option + ' | dwiextract - ' + path.to_scratch('dwi.mif') + shells_option + singleshell_option, show=False)
  else: # Don't discard b=0 in multi-shell algorithms
    app.console('Importing DWI data (' + path.from_user(app.ARGS.input) + ')...')
    run.command('mrconvert ' + path.from_user(app.ARGS.input) + ' ' + path.to_scratch('dwi.mif') + ' -strides 0,0,0,1' + grad_import_option, show=False)
  if app.ARGS.mask:
    app.console('Importing mask (' + path.from_user(app.ARGS.mask) + ')...')
    run.command('mrconvert ' + path.from_user(app.ARGS.mask) + ' ' + path.to_scratch('mask.mif') + ' -datatype bit', show=False)

  alg.get_inputs()

  app.goto_scratch_dir()

  if alg.supports_mask():
    if app.ARGS.mask:
      # Check that the brain mask is appropriate
      mask_header = image.Header('mask.mif')
      if mask_header.size()[:3] != image.Header('dwi.mif').size()[:3]:
        raise MRtrixError('Dimensions of provided mask image do not match DWI')
      if not (len(mask_header.size()) == 3 or (len(mask_header.size()) == 4 and mask_header.size()[3] == 1)):
        raise MRtrixError('Provided mask image needs to be a 3D image')
    else:
      app.console('Computing brain mask (dwi2mask)...')
      run.command('dwi2mask dwi.mif mask.mif', show=False)

    if not image.statistics('mask.mif', mask='mask.mif').count:
      raise MRtrixError(('Provided' if app.ARGS.mask else 'Generated') + ' mask image does not contain any voxels')

  # From here, the script splits depending on what estimation algorithm is being used
  alg.execute()






# Execute the script
import mrtrix3
mrtrix3.execute() #pylint: disable=no-member